aa / app.py
TH9817's picture
Update app.py
3ec1f20 verified
raw
history blame
3.46 kB
import av
import torch
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
import gradio as gr
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
processor = LlavaNextVideoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
"llava-hf/LLaVA-NeXT-Video-7B-hf",
quantization_config=quantization_config,
device_map='auto'
)
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (av.container.input.InputContainer): PyAV container.
indices (List[int]): List of frame indices to decode.
Returns:
np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def chat(token):
# Download video from the hub
#video_path_1 = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
video_path="./sample1-Scene-001.mp4"
#video_path_2 = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="karate.mp4", repo_type="dataset")
container = av.open(video_path)
# sample uniformly 8 frames from the video (we can sample more for longer videos)
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
clip_baby = read_video_pyav(container, indices)
#container = av.open(video_path_2)
# sample uniformly 8 frames from the video (we can sample more for longer videos)
#total_frames = container.streams.video[0].frames
#indices = np.arange(0, total_frames, total_frames / 8).astype(int)
#clip_karate = read_video_pyav(container, indices)
# Each "content" is a list of dicts and you can add image/video/text modalities
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What happens in the video?"},
{"type": "video"},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "text", "text": "What do you see in this video?"},
{"type": "video"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
#prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
inputs = processor(prompt, videos=clip_baby, padding=True, return_tensors="pt").to(model.device)
generate_kwargs = {"max_new_tokens": token, "do_sample": True, "top_p": 0.9}
output = model.generate(**inputs, **generate_kwargs)
generated_text = processor.batch_decode(output, skip_special_tokens=True)
return generated_text
demo = gr.Interface(
fn=chat,
inputs=[gr.Slider(100,300)],
outputs=["text"],
)
# 起動
demo.launch()