Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,23 @@
|
|
1 |
import av
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def read_video_pyav(container, indices):
|
7 |
'''
|
@@ -23,20 +39,34 @@ def read_video_pyav(container, indices):
|
|
23 |
frames.append(frame)
|
24 |
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
25 |
|
26 |
-
# Load the model in half-precision
|
27 |
-
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", torch_dtype=torch.float16, device_map="auto")
|
28 |
-
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
29 |
|
30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
|
|
32 |
container = av.open(video_path)
|
|
|
|
|
33 |
total_frames = container.streams.video[0].frames
|
34 |
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
35 |
-
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
inputs = processor(text=prompt, videos=video, return_tensors="pt")
|
40 |
|
41 |
-
|
42 |
-
|
|
|
1 |
import av
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
|
6 |
+
#import time
|
7 |
+
|
8 |
+
#start = time.time()
|
9 |
+
|
10 |
+
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
|
11 |
+
|
12 |
+
#device = torch.device('mps')
|
13 |
+
|
14 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
15 |
+
model_id,
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
low_cpu_mem_usage=True,
|
18 |
+
).to(0)
|
19 |
+
|
20 |
+
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
|
21 |
|
22 |
def read_video_pyav(container, indices):
|
23 |
'''
|
|
|
39 |
frames.append(frame)
|
40 |
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
+
# define a chat history and use `apply_chat_template` to get correctly formatted prompt
|
44 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image", "video")
|
45 |
+
conversation = [
|
46 |
+
{
|
47 |
+
|
48 |
+
"role": "user",
|
49 |
+
"content": [
|
50 |
+
{"type": "text", "text": "What is happening in this video?"},
|
51 |
+
{"type": "video"},
|
52 |
+
],
|
53 |
+
},
|
54 |
+
]
|
55 |
+
|
56 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
57 |
+
|
58 |
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
59 |
+
#video_path="/Users/aa469627/Desktop/videollama/scene/sample1-Scene-049.mp4"
|
60 |
container = av.open(video_path)
|
61 |
+
|
62 |
+
# sample uniformly 8 frames from the video, can sample more for longer videos
|
63 |
total_frames = container.streams.video[0].frames
|
64 |
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
65 |
+
clip = read_video_pyav(container, indices)
|
66 |
+
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)
|
67 |
|
68 |
+
output = model.generate(**inputs_video, max_new_tokens=200, do_sample=False)
|
69 |
+
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
|
|
70 |
|
71 |
+
#end = time.time()
|
72 |
+
#print(end-start)
|