Spaces:
Running
Running
File size: 43,374 Bytes
89dc200 3f71586 89dc200 3f71586 89dc200 3f71586 89dc200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
# -*- encoding: utf-8 -*-
'''
@File : cogvideo_pipeline.py
@Time : 2022/07/15 11:24:56
@Author : Wenyi Hong
@Version : 1.0
@Contact : hwy22@mails.tsinghua.edu.cn
'''
# here put the import lib
import os
import sys
import torch
import argparse
import time
from torchvision.utils import save_image
import stat
from icetk import icetk as tokenizer
import logging, sys
import torch.distributed as dist
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
from SwissArmyTransformer import get_args
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
from SwissArmyTransformer.resources import auto_create
from models.cogvideo_cache_model import CogVideoCacheModel
from coglm_strategy import CoglmStrategy
def get_masks_and_position_ids_stage1(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long,
device=data.device)
torch.arange(textlen, out=position_ids[:textlen],
dtype=torch.long, device=data.device)
torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:],
dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def get_masks_and_position_ids_stage2(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long,
device=data.device)
torch.arange(textlen, out=position_ids[:textlen],
dtype=torch.long, device=data.device)
frame_num = (seq_length-textlen)//framelen
assert frame_num == 5
torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5],
dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len):
if hiddens is None:
return None, mems_indexs
mem_num = len(hiddens)
ret_mem = []
with torch.no_grad():
for id in range(mem_num):
if hiddens[id][0] is None:
ret_mem.append(None)
else:
if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len:
if mems_indexs[id] == 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len]
new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len
if new_mem_len_part2 > 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:]
mems_indexs[id] = text_len+new_mem_len_part2
else:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
mems_indexs[id] += hidden.shape[1]
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
return ret_mem, mems_indexs
def my_save_multiple_images(imgs, path, subdir, debug=True):
# imgs: list of tensor images
if debug:
imgs = torch.cat(imgs, dim=0)
print("\nSave to: ", path, flush=True)
save_image(imgs, path, normalize=True)
else:
print("\nSave to: ", path, flush=True)
single_frame_path = os.path.join(path, subdir)
os.makedirs(single_frame_path, exist_ok=True)
for i in range(len(imgs)):
save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True)
os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True)
os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
# The fisrt token's position id of the frame that the next token belongs to;
if total_len < text_len:
return None
return (total_len-text_len)//frame_len * frame_len + text_len
def my_filling_sequence(
model,
args,
seq,
batch_size,
get_masks_and_position_ids,
text_len,
frame_len,
strategy=BaseStrategy(),
strategy2=BaseStrategy(),
mems=None,
log_text_attention_weights=0, # default to 0: no artificial change
mode_stage1=True,
enforce_no_swin=False,
guider_seq=None,
guider_text_len=0,
guidance_alpha=1,
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
if guider_seq is not None:
logging.debug("Using Guidance In Inference")
if limited_spatial_channel_mem:
logging.debug("Limit spatial-channel's mem to current frame")
assert len(seq.shape) == 2
# building the initial tokens, attention_mask, and position_ids
actual_context_length = 0
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
actual_context_length += 1 # [0, context_length-1] are given
assert actual_context_length > 0
current_frame_num = (actual_context_length-text_len) // frame_len
assert current_frame_num >= 0
context_length = text_len + current_frame_num * frame_len
tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len)
tokens = tokens[..., :context_length]
input_tokens = tokens.clone()
if guider_seq is not None:
guider_index_delta = text_len - guider_text_len
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
guider_tokens = guider_tokens[..., :context_length-guider_index_delta]
guider_input_tokens = guider_tokens.clone()
for fid in range(current_frame_num):
input_tokens[:, text_len+400*fid] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, guider_text_len+400*fid] = tokenizer['<start_of_image>']
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
# initialize generation
counter = context_length - 1 # Last fixed index is ``counter''
index = 0 # Next forward starting index, also the length of cache.
mems_buffers_on_GPU = False
mems_indexs = [0, 0]
mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74]
mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
for mem_len in mems_len]
if guider_seq is not None:
guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16
guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
for mem_len in mems_len]
guider_mems_indexs = [0, 0]
guider_mems = None
torch.cuda.empty_cache()
# step-by-step generation
while counter < len(seq[0]) - 1:
# we have generated counter+1 tokens
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
if index == 0:
group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size
logits_all = None
for batch_idx in range(0, input_tokens.shape[0], group_size):
logits, *output_per_layers = model(
input_tokens[batch_idx:batch_idx+group_size, index:],
position_ids[..., index: counter+1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args
)
logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]]
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1])
for id, mem_kv in enumerate(mem_kv01):
for layer, mem_kv_perlayer in enumerate(mem_kv):
if limited_spatial_channel_mem and id == 0:
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len]
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
else:
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
logits = logits_all
# Guider
if guider_seq is not None:
guider_logits_all = None
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):],
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter-guider_index_delta,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args
)
guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits
guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]]
for id, guider_mem_kv in enumerate(guider_mem_kv01):
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
if limited_spatial_channel_mem and id == 0:
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len]
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1])
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
else:
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len)
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
guider_logits = guider_logits_all
else:
if not mems_buffers_on_GPU:
if not mode_stage1:
torch.cuda.empty_cache()
for idx, mem in enumerate(mems):
mems[idx] = mem.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, mem in enumerate(guider_mems):
guider_mems[idx] = mem.to(next(model.parameters()).device)
else:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
mems_buffers_on_GPU = True
logits, *output_per_layers = model(
input_tokens[:, index:],
position_ids[..., index: counter+1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args
)
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]
if guider_seq is not None:
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[:, max(index-guider_index_delta, 0):],
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter-guider_index_delta,
log_text_attention_weights=0,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args
)
guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]
if not mems_buffers_on_GPU:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
mems_buffers_on_GPU = True
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len)
if guider_seq is not None:
guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len)
counter += 1
index = counter
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
tokens = tokens.expand(batch_size, -1)
if guider_seq is not None:
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
guider_tokens = guider_tokens.expand(batch_size, -1)
if seq[-1][counter].item() < 0:
# sampling
guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits
if mode_stage1 and counter < text_len + 400:
tokens, mems = strategy.forward(guided_logits, tokens, mems)
else:
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
if seq[0][counter].item() >= 0:
for si in range(seq.shape[0]):
if seq[si][counter].item() >= 0:
tokens[si, -1] = seq[si, counter]
if guider_seq is not None:
guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta]
else:
tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens,
guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta]
.clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1)
input_tokens = tokens.clone()
if guider_seq is not None:
guider_input_tokens = guider_tokens.clone()
if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400:
boi_idx = ((index-text_len-1)//400 +1)*400+text_len
while boi_idx < input_tokens.shape[-1]:
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer['<start_of_image>']
boi_idx += 400
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
class InferenceModel_Sequential(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
class InferenceModel_Interpolate(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
def main(args):
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1
rank_id = args.device % args.parallel_size
generate_frame_num = args.generate_frame_num
if args.stage_1 or args.both_stages:
model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1')
model_stage1.eval()
if args.both_stages:
model_stage1 = model_stage1.cpu()
if args.stage_2 or args.both_stages:
model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2')
model_stage2.eval()
if args.both_stages:
model_stage2 = model_stage2.cpu()
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
strategy_cogview2 = CoglmStrategy(invalid_slices,
temperature=1.0, top_k=16)
strategy_cogvideo = CoglmStrategy(invalid_slices,
temperature=args.temperature, top_k=args.top_k,
temperature2=args.coglm_temperature2)
if not args.stage_1:
from sr_pipeline import DirectSuperResolution
dsr_path = auto_create('cogview2-dsr', path=None) # path=os.getenv('SAT_HOME', '~/.sat_models')
dsr = DirectSuperResolution(args, dsr_path,
max_bz=12, onCUDA=False)
def process_stage2(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1):
stage2_starttime = time.time()
use_guidance = args.use_guidance_stage2
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage-2 model to cuda")
model = model.cuda()
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
try:
if parent_given_tokens is None:
assert conddir is not None
parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu')
sample_num_allgpu = parent_given_tokens.shape[0]
sample_num = sample_num_allgpu // gpu_parallel_size
assert sample_num * gpu_parallel_size == sample_num_allgpu
parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num]
except:
logging.critical("No frame_tokens found in interpolation, skip")
return False
# CogVideo Stage2 Generation
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
parent_given_tokens_num = parent_given_tokens.shape[1]
generate_batchsize_persample = (parent_given_tokens_num-1)//2
generate_batchsize_total = generate_batchsize_persample * sample_num
total_frames = generate_frame_num
frame_len = 400
enc_text = tokenizer.encode(seq_text)
enc_duration = tokenizer.encode(str(float(duration))+"秒")
seq = enc_duration + [tokenizer['<n>']] + enc_text + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
text_len = len(seq) - frame_len*generate_frame_num - 1
logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text)))
# generation
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
if use_guidance:
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
video_log_text_attention_weights = 0
else:
guider_seq=None
guider_text_len=0
video_log_text_attention_weights = 1.4
mbz = args.max_inference_batch_size
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
output_list = []
start_time = time.time()
for tim in range(max(generate_batchsize_total // mbz, 1)):
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append(
my_filling_sequence(model, args, input_seq,
batch_size=min(generate_batchsize_total, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
text_len=text_len, frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
mode_stage1=False,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
)[0]
)
logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time))
output_tokens = torch.cat(output_list, dim=0)
output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames)
output_tokens_merge = torch.cat((output_tokens[:, :, :1*400],
output_tokens[:, :, 400*3:4*400],
output_tokens[:, :, 400*1:2*400],
output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400)
output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1)
duration /= 2
parent_given_tokens = output_tokens_merge
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 2 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug("moving out model2 takes time: {:.2f}".format(time.time()-move_start_time))
logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime))
# decoding
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
# os.makedirs(output_dir_full_path, exist_ok=True)
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False)
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt'))
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2")
# direct super-resolution by CogView2
logging.info("[Direct super-resolution]")
dsr_starttime = time.time()
enc_text = tokenizer.encode(seq_text)
frame_num_per_sample = parent_given_tokens.shape[1]
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1)
sred_tokens = dsr(text_seq, parent_given_tokens_2d)
decoded_sr_videos = []
for sample_i in range(sample_num):
decoded_sr_imgs = []
for frame_i in range(frame_num_per_sample):
decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:])
decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)))
decoded_sr_videos.append(decoded_sr_imgs)
for sample_i in range(sample_num):
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125")
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
return True
def process_stage1(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1):
process_start_time = time.time()
use_guide = args.use_guidance_stage1
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cuda")
model = model.cuda()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
if video_raw_text is None:
video_raw_text = seq_text
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
assert batch_size < mbz or batch_size % mbz == 0
frame_len = 400
# generate the first frame:
enc_text = tokenizer.encode(seq_text+image_text_suffix)
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1]*400 # IV!! # test local!!! # test randboi!!!
logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text)))
text_len_1st = len(seq_1st) - frame_len*1 - 1
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
output_list_1st = []
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
output_list_1st.append(
my_filling_sequence(model, args,seq_1st.clone(),
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len_1st,
frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=1.4,
enforce_no_swin=True,
mode_stage1=True,
)[0]
)
logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time))
output_tokens_1st = torch.cat(output_list_1st, dim=0)
given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400]
# generate subsequent frames:
total_frames = generate_frame_num
enc_duration = tokenizer.encode(str(float(duration))+"秒")
if use_guide:
video_raw_text = video_raw_text + " 视频"
enc_text_video = tokenizer.encode(video_raw_text)
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video)))
text_len = len(seq) - frame_len*generate_frame_num - 1
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
for given_frame_id in range(given_tokens.shape[1]):
seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
output_list = []
if use_guide:
video_log_text_attention_weights = 0
else:
guider_seq = None
video_log_text_attention_weights = 1.4
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append(
my_filling_sequence(model, args,input_seq,
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len, frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
mode_stage1=True,
)[0]
)
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
# decoding
imgs, sred_imgs, txts = [], [], []
for seq in output_tokens:
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
imgs.append(decoded_imgs) # only the last image (target)
assert len(imgs) == batch_size
save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu()
if outputdir is not None:
for clip_i in range(len(imgs)):
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25")
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
return save_tokens
# ======================================================================================================
if args.stage_1 or args.both_stages:
if args.input_source != "interactive":
with open(args.input_source, 'r') as fin:
promptlist = fin.readlines()
promptlist = [p.strip() for p in promptlist]
else:
promptlist = None
now_qi = -1
while True:
now_qi += 1
if promptlist is not None: # with input-source
if args.multi_gpu:
if now_qi % dist.get_world_size() != dist.get_rank():
continue
rk = dist.get_rank()
else:
rk = 0
raw_text = promptlist[now_qi]
raw_text = raw_text.strip()
print(f'Working on Line No. {now_qi} on {rk}... [{raw_text}]')
else: # interactive
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
raw_text = raw_text.strip()
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
return
try:
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}")
parent_given_tokens = process_stage1(model_stage1, raw_text, duration=4.0, video_raw_text=raw_text, video_guidance_text="视频",
image_text_suffix=" 高清摄影",
outputdir=path if args.stage_1 else None, batch_size=args.batch_size)
if args.both_stages:
process_stage2(model_stage2, raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
except (ValueError, FileNotFoundError) as e:
print(e)
continue
elif args.stage_2:
sample_dirs = os.listdir(args.output_path)
for sample in sample_dirs:
raw_text = sample.split('_')[-1]
path = os.path.join(args.output_path, sample, 'Interp')
parent_given_tokens = torch.load(os.path.join(args.output_path, sample, "frame_tokens.pt"))
process_stage2(raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
else:
assert False
if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--generate-frame-num', type=int, default=5)
py_parser.add_argument('--coglm-temperature2', type=float, default=0.89)
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成,0是超分,0.5/1/2是插帧
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间
py_parser.add_argument('--use-guidance-stage1', action='store_true')
py_parser.add_argument('--use-guidance-stage2', action='store_false')
py_parser.add_argument('--guidance-alpha', type=float, default=3.0)
py_parser.add_argument('--stage-1', action='store_true') # stage 1: sequential generation
py_parser.add_argument('--stage-2', action='store_false') # stage 2: interp + dsr
py_parser.add_argument('--both-stages', action='store_false') # stage 1&2: sequential generation; interp + dsr
py_parser.add_argument('--parallel-size', type=int, default=1)
py_parser.add_argument('--stage1-max-inference-batch-size', type=int, default=1) # -1: use max-inference-batch-size
py_parser.add_argument('--multi-gpu', action='store_false')
CogVideoCacheModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(',')]
args.do_train = False
torch.cuda.set_device(args.device)
with torch.no_grad():
main(args) |