CogVideoX-2B-Space / models /cogvideo_cache_model.py
akhaliq's picture
akhaliq HF staff
add files
89dc200
raw
history blame
37 kB
# -*- encoding: utf-8 -*-
'''
@File : cogvideo_cache_model.py
@Time : 2022/07/15 11:22:19
@Author : Wenyi Hong
@Version : 1.0
@Contact : hwy22@mails.tsinghua.edu.cn
'''
# here put the import lib
from multiprocessing import context
from tkinter import E
import torch
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
from SwissArmyTransformer.mpu.utils import split_tensor_along_last_dim
from SwissArmyTransformer.model.transformer import unscaled_init_method
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
import torch.nn.functional as F
from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker
import math
class PositionEmbeddingMixin(BaseMixin):
def __init__(self, additional_sequence_length, hidden_size,
init_method_std=0.02, reinit_slice=slice(512, 912),
):
super(PositionEmbeddingMixin, self).__init__()
self.reinit_slice = reinit_slice
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
def reinit(self, parent_model=None):
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
old_len, hidden_size = old_weights.shape
assert hidden_size == self.position_embeddings.weight.shape[-1]
self.position_embeddings.weight.data.view(-1, old_len, hidden_size).copy_(old_weights)
def window_partition(x, window_size):
"""
Args:
x: (B, framenum, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, frame_num, window_size, window_size, C)
"""
B, framenum, H, W, C = x.shape
x = x.view(B, framenum, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view(-1, framenum, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, frame_num, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, frame_num, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
framenum = windows.shape[1]
x = windows.view(B, H // window_size, W // window_size, framenum, window_size, window_size, -1)
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, framenum, H, W, -1)
return x
class WindowAttentionMixin(BaseMixin):
def __init__(self, num_layers,
hidden_size,
frame_resolution,
window_size,
shift_size,
n_head,
frame_num,
init_method=unscaled_init_method(0.02),
output_layer_init_method=unscaled_init_method(0.02),
time_dim_attend_length=0
):
super(WindowAttentionMixin, self).__init__()
self.num_layers = num_layers # replace attention in the LAST n layers
self.query_key_value = torch.nn.ModuleList(
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
gather_output=False,init_method=init_method)
for layer_id in range(num_layers)
])
self.dense = torch.nn.ModuleList(
[RowParallelLinear(
hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method,
bias=True,
module=self,
name="dense")
for layer_id in range(num_layers)
])
self.n_head = n_head
self.window_size = window_size
self.frame_resolution = frame_resolution
self.frame_len = frame_resolution * frame_resolution
self.time_dim_attend_length = time_dim_attend_length
assert frame_resolution % window_size == 0
assert 0 < shift_size < window_size
nW = (self.frame_resolution // self.window_size) ** 2
ws_squre = self.window_size * self.window_size
# odd non-shift, even shift
img_mask = torch.zeros((1, 1, frame_resolution, frame_resolution, 1))
h_slices = (slice(0, -shift_size),
slice(-shift_size, None))
w_slices = (slice(0, -shift_size),
slice(-shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, :, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, 1, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
sub_attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) #[nW, self.window_size * self.window_size, self.window_size * self.window_size]
sub_attn_mask = sub_attn_mask.masked_fill(sub_attn_mask != 0, float(0.0)).masked_fill(sub_attn_mask == 0, float(1.00))
attn_mask = sub_attn_mask.repeat(1, frame_num, frame_num)
attn_mask = attn_mask.tril()
causal_mask = torch.ones(ws_squre*frame_num, ws_squre*frame_num)
causal_mask = causal_mask.tril()
self.shift_sizes = [0, shift_size]
self.attn_mask = attn_mask
self.causal_mask = causal_mask
self.mask_initialized = False
self.attn_distribution = torch.nn.ParameterList([
torch.nn.Parameter(torch.zeros(hidden_size))
for _ in range(num_layers)
])
def reinit(self, *pre_mixins):
start_layer = len(self.transformer.layers) - self.num_layers
assert start_layer >= 0
for layer_id in range(self.num_layers):
old_attention = self.transformer.layers[start_layer + layer_id].attention
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
def attention_extra_NAR_inference(self, frame_hidden_state, layer_id, attn_dropout=None, memkv_text=None, stage=1):
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
if not self.mask_initialized:
self.attn_mask = self.attn_mask.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.causal_mask = self.causal_mask.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.mask_initialized = True
b0, s1, h0 = frame_hidden_state.shape
h = h0 // self.n_head
frame_len = self.frame_resolution * self.frame_resolution
frame_num = s1 // frame_len
if stage == 2:
assert frame_num == 3
assert frame_num*frame_len == s1
wind_square = self.window_size * self.window_size
nW = frame_len // wind_square
bswin = b0 * nW
if memkv_text is not None:
s0 = memkv_text.shape[-2]
k_text = memkv_text[..., :h0].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
v_text = memkv_text[..., h0:].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
# shift
frame_hidden_state = frame_hidden_state.reshape(b0, frame_num, self.frame_resolution, self.frame_resolution, h0)
if self.shift_sizes[layer_id%2] > 0:
frame_hidden_state = torch.roll(frame_hidden_state, shifts=(-self.shift_sizes[layer_id%2], -self.shift_sizes[layer_id%2]), dims=(2,3))
# window partition
frame_hidden_state = window_partition(frame_hidden_state, self.window_size).reshape(bswin, frame_num*wind_square, h0)
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(bswin, frame_num*wind_square, 3, self.n_head, h)\
.permute(2, 0, 3, 1, 4) #[3, bswin, n_head, frame_num*wind_size*wind_size, h]
q, k, v = qkv[0], qkv[1], qkv[2]
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
if stage == 1:
if self.shift_sizes[layer_id%2] > 0:
attn = torch.mul(attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square),
self.attn_mask[:,:frame_num*wind_square, :frame_num*wind_square].unsqueeze(1).unsqueeze(0))\
- 10000.0 * (1.0 - self.attn_mask[:,:frame_num*wind_square, :frame_num*wind_square].unsqueeze(1).unsqueeze(0))
attn = attn.view(bswin, self.n_head, frame_num*wind_square, frame_num*wind_square)
else:
attn = torch.mul(attn, self.causal_mask[:frame_num*wind_square, :frame_num*wind_square].unsqueeze(0).unsqueeze(0))\
- 10000.0 * (1.0 - self.causal_mask[:frame_num*wind_square, :frame_num*wind_square].unsqueeze(0).unsqueeze(0))
if memkv_text is None:
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
else:
attn_frame2text = torch.matmul(q.reshape(b0, -1, self.n_head, frame_num*wind_square, h) / math.sqrt(h), k_text.unsqueeze(1).transpose(-1, -2))
attn_frame2text = attn_frame2text.reshape(bswin, self.n_head, frame_num*wind_square, s0)
attn = torch.cat((attn, attn_frame2text), dim=-1)
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = (torch.matmul(attn[..., :-s0], v) +
torch.matmul(attn[..., -s0:].reshape(b0, -1, self.n_head,frame_num*wind_square, s0), v_text.unsqueeze(1))\
.reshape(bswin, self.n_head, frame_num*wind_square, h))\
.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
context_swin = window_reverse(context_swin, self.window_size, self.frame_resolution, self.frame_resolution)
# reverse cycle shift
if self.shift_sizes[layer_id%2] > 0:
context_swin = torch.roll(context_swin, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
ret_context = context_swin.reshape(b0, s1, h0)
# for mem
memk = k.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
memv = v.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
memk = window_reverse(memk, self.window_size, self.frame_resolution, self.frame_resolution)
memv = window_reverse(memv, self.window_size, self.frame_resolution, self.frame_resolution)
if self.shift_sizes[layer_id%2] > 0:
memk = torch.roll(memk, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
memv = torch.roll(memv, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
memk, memv = memk.reshape(b0, s1, h0), memv.reshape(b0, s1, h0)
ret_mem = torch.cat((memk, memv), dim=-1)
return ret_context, ret_mem
def attention_extra_AR_inference(self, frame_hidden_state, memkv, pos, layer_id, log_text_attention_weights=0, attn_dropout=None, memkv_text=None, stage=1):
# frame_hidden_state [batchsize, 1, n_head*hiddensize_perhead]
# memkv [batchsize, pos, hidden_size*2] (include frames only)
# if memkv_text is not None: will attend to text
# pos: token's pos
b0, sin, h0 = frame_hidden_state.shape
h = h0 // self.n_head
assert sin == 1
this_qkv = self.query_key_value[layer_id](frame_hidden_state)
thisq, thisk, thisv = this_qkv[..., :h0], this_qkv[..., h0:2*h0], this_qkv[..., 2*h0:]
s1 = memkv.shape[1] if memkv is not None else 0
frame_len = self.frame_resolution * self.frame_resolution
frame_num_before = s1 // frame_len
if memkv is not None:
pos_inframe = pos - frame_num_before * frame_len
xpos = pos_inframe // self.frame_resolution # pos = xpos*self.frame_resolution + ypos
ypos = pos_inframe % self.frame_resolution
# [start, end)
if self.shift_sizes[layer_id%2] > 0:
xstart = ((xpos+self.shift_sizes[layer_id%2]) // self.window_size) * self.window_size - self.shift_sizes[layer_id%2]
ystart = ((ypos+self.shift_sizes[layer_id%2]) // self.window_size) * self.window_size - self.shift_sizes[layer_id%2]
xend = xstart + self.window_size
yend = ystart + self.window_size
xstart, ystart = max(0, xstart), max(0, ystart)
xend, yend = min(xend, self.frame_resolution), min(yend, self.frame_resolution)
else:
xstart = (xpos // self.window_size) * self.window_size
ystart = (ypos // self.window_size) * self.window_size
xend, yend = xstart + self.window_size, ystart+self.window_size
# select index
selected_index = list()
if frame_num_before > 0:
# frames before
frame_attended_start = max(0, frame_num_before-self.time_dim_attend_length+1) if self.time_dim_attend_length > 0 else 0
for x in range(xstart, xend):
for y in range(ystart, yend):
selected_index.append(x*self.frame_resolution+y+frame_len*frame_attended_start)
cnt_per_frame = len(selected_index)
for _ in range((frame_num_before-frame_attended_start-1)*cnt_per_frame):
selected_index.append(selected_index[-cnt_per_frame]+frame_len)
# the last frame
for x in range(xstart, xend):
for y in range(ystart, yend):
tmppos = x*self.frame_resolution+y + frame_num_before * frame_len
if tmppos < pos:
selected_index.append(tmppos)
else:
break
cnt_all = len(selected_index)+1
selected_index = torch.tensor(selected_index, device=memkv.device)
used_memkv = torch.index_select(memkv, 1, selected_index)
used_k, used_v = used_memkv[..., :h0], used_memkv[..., h0:]
used_k = torch.cat((used_k.expand(thisk.shape[0], -1, -1), thisk), dim=-2)
used_v = torch.cat((used_v.expand(thisv.shape[0], -1, -1), thisv), dim=-2)
if memkv_text is not None:
cnt_all += memkv_text.shape[-2]
used_k = torch.cat((memkv_text[..., :h0].expand(thisk.shape[0], -1, -1), used_k), dim=-2)
used_v = torch.cat((memkv_text[..., h0:].expand(thisv.shape[0], -1, -1), used_v), dim=-2)
used_k = used_k.reshape(b0, cnt_all, self.n_head, h).permute(0, 2, 1, 3)
used_v = used_v.reshape(b0, cnt_all, self.n_head, h).permute(0, 2, 1, 3)
else:
used_k = thisk
used_v = thisv
if memkv_text is not None:
used_k = torch.cat((memkv_text[..., :h0].expand(thisk.shape[0], -1, -1), used_k), dim=-2)
used_v = torch.cat((memkv_text[..., h0:].expand(thisv.shape[0], -1, -1), used_v), dim=-2)
used_k = used_k.reshape(b0, 1+memkv_text.shape[-2], self.n_head, h).permute(0, 2, 1, 3)
used_v = used_v.reshape(b0, 1+memkv_text.shape[-2], self.n_head, h).permute(0, 2, 1, 3)
else:
used_k = used_k.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3)
used_v = used_v.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3)
thisq = thisq.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3) # [b0, n_head, 1, h]
attn = torch.matmul(thisq / math.sqrt(h), used_k.transpose(-1, -2))
if memkv_text is not None:
attn[..., :memkv_text.shape[-2]] += log_text_attention_weights
attn = F.softmax(attn, dim=-1)
context_swin = torch.matmul(attn, used_v).permute(0, 2, 1, 3).reshape(b0, 1, h0)
return context_swin, this_qkv[..., h0:]
class FullAttentionMixin(BaseMixin):
def __init__(self, num_layers,
hidden_size,
frame_resolution,
n_head,
frame_num,
init_method=unscaled_init_method(0.02),
output_layer_init_method=unscaled_init_method(0.02),
**kwargs,
):
super(FullAttentionMixin, self).__init__()
self.num_layers = num_layers # replace attention in the LAST n layers
self.query_key_value = torch.nn.ModuleList(
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
gather_output=False,init_method=init_method)
for layer_id in range(num_layers)
])
self.dense = torch.nn.ModuleList(
[RowParallelLinear(
hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method,
bias=True,
module=self,
name="dense")
for layer_id in range(num_layers)
])
self.n_head = n_head
self.frame_resolution = frame_resolution
self.frame_len = frame_resolution * frame_resolution
self.attn_distribution = torch.nn.ParameterList([
torch.nn.Parameter(torch.zeros(hidden_size))
for _ in range(num_layers)
])
def reinit(self, *pre_mixins):
start_layer = len(self.transformer.layers) - self.num_layers
assert start_layer >= 0
for layer_id in range(self.num_layers):
old_attention = self.transformer.layers[start_layer + layer_id].attention
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
def attention_extra_NAR_inference(self, frame_hidden_state, layer_id, attn_dropout=None, memkv_text=None, stage=1):
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
assert stage == 1
b0, s1, h0 = frame_hidden_state.shape
h = h0 // self.n_head
frame_len = self.frame_resolution * self.frame_resolution
frame_num = s1 // frame_len
assert frame_num*frame_len == s1
if memkv_text is not None:
s0 = memkv_text.shape[-2]
k_text = memkv_text[..., :h0].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
v_text = memkv_text[..., h0:].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(b0, s1, 3, self.n_head, h)\
.permute(2, 0, 3, 1, 4) #[3, b0, n_head, s1, h]
q, k, v = qkv[0], qkv[1], qkv[2]
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
attn = attn - 10000.0 * (1.0-torch.ones(b0, self.n_head, s1, s1, device=attn.device, dtype=attn.dtype).tril())
if memkv_text is None:
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(b0, s1, h0)
else:
attn_frame2text = torch.matmul(q / math.sqrt(h), k_text.transpose(-1, -2)) #[b0, s1, s0]
attn = torch.cat((attn, attn_frame2text), dim=-1)
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = (torch.matmul(attn[..., :-s0], v) + torch.matmul(attn[..., -s0:], v_text))\
.permute(0, 2, 1, 3).reshape(b0, s1, h0)
# for mem
memk = k.permute(0, 2, 1, 3).reshape(b0, s1, h0)
memv = v.permute(0, 2, 1, 3).reshape(b0, s1, h0)
ret_mem = torch.cat((memk, memv), dim=-1)
return context_swin, ret_mem
def attention_extra_AR_inference(self, frame_hidden_state, memkv, pos, layer_id, log_text_attention_weights=0, attn_dropout=None, memkv_text=None, stage=1):
# pos: current token's pos
b0, sin, h0 = frame_hidden_state.shape
h = h0 // self.n_head
assert sin == 1
assert stage == 1
this_qkv = self.query_key_value[layer_id](frame_hidden_state)
thisq, thisk, thisv = this_qkv[..., :h0], this_qkv[..., h0:2*h0], this_qkv[..., 2*h0:]
if memkv is not None:
used_k, used_v = memkv[..., :h0], memkv[..., h0:]
used_k = torch.cat((used_k.expand(thisk.shape[0], -1, -1), thisk), dim=-2)
used_v = torch.cat((used_v.expand(thisv.shape[0], -1, -1), thisv), dim=-2)
else:
used_k, used_v = thisk, thisv
if memkv_text is not None:
used_k = torch.cat((memkv_text[..., :h0].expand(thisk.shape[0], -1, -1), used_k), dim=-2)
used_v = torch.cat((memkv_text[..., h0:].expand(thisv.shape[0], -1, -1), used_v), dim=-2)
used_k = used_k.reshape(b0, -1, self.n_head, h).permute(0, 2, 1, 3)
used_v = used_v.reshape(b0, -1, self.n_head, h).permute(0, 2, 1, 3)
thisq = thisq.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3) # [b0, n_head, 1, h]
attn = torch.matmul(thisq / math.sqrt(h), used_k.transpose(-1, -2))
if memkv_text is not None:
attn[..., :memkv_text.shape[-2]] += log_text_attention_weights
attn = F.softmax(attn, dim=-1)
context_swin = torch.matmul(attn, used_v).permute(0, 2, 1, 3).reshape(b0, 1, h0)
return context_swin, this_qkv[..., h0:]
def attention_localframe_and_text_NAR(q0, k0, v0, attention_mask,
n_head, text_len, frame_len, frame_num,
attention_dropout=None, log_text_attention_weights=0, stage=1, **kwargs):
b, s0, h0 = q0.shape
s1 = s0 - text_len
h = h0 // n_head
assert q0.shape[1] == v0.shape[1] == k0.shape[1] == text_len+frame_len*frame_num
# attention_mask.shape [4, b or 1, 1, text_len+frame_len, text_len+frame_len]
if stage == 2:
assert frame_num == 3
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
k0 = k0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
k0T = k0.transpose(-1, -2)
score_any2text = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., :text_len])
score_any2text += log_text_attention_weights
score_any2text_part1 = torch.mul(score_any2text[..., :text_len, :], attention_mask[..., :text_len, :text_len]) \
- 10000.0 * (1.0 - attention_mask[..., :text_len, :text_len])
# context for text
attention_probs_text = F.softmax(score_any2text_part1, dim=-1)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs_text = attention_dropout(attention_probs_text)
context_text2text = torch.matmul(attention_probs_text, v0[..., :text_len, :])
context_text2text = context_text2text.transpose(1, 2).reshape(b, text_len, h0)
if frame_num > 0:
score_any2text_part2 = score_any2text[..., text_len:, :]
# score: frame local
q0_frame = q0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
v0_frame = v0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
k0T_frame = k0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h).transpose(-1, -2)
score_frame_local0 = torch.matmul(q0_frame / math.sqrt(q0_frame.shape[-1]), k0T_frame)
if stage == 1:
score_frame_local0 = torch.mul(score_frame_local0, attention_mask[..., text_len:, text_len:].unsqueeze(1)) \
- 10000.0 * (1.0 - attention_mask[..., text_len:, text_len:].unsqueeze(1))
# context for frame
score_frame_all = torch.cat((score_any2text_part2,
score_frame_local0.view(b, n_head, s1, frame_len)), dim=-1)
attention_probs_frame = F.softmax(score_frame_all, dim=-1)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs_frame = attention_dropout(attention_probs_frame)
context_frame2text = torch.matmul(attention_probs_frame[..., :text_len], v0[..., :text_len, :]) # [b, n_head, s1, h]
context_frame_local0 = torch.matmul(attention_probs_frame[..., text_len:text_len+frame_len].\
view(b, n_head, frame_num, frame_len, frame_len), v0_frame).view(b, n_head, s1, h)
context_frame = (context_frame2text + context_frame_local0).transpose(1, 2).reshape(b, s1, h0)
else:
context_frame = None
return context_text2text, context_frame
def attention_localframe_and_text_AR(q0, k0, v0, n_head, text_len, frame_len, frame_num,
attention_dropout=None, log_text_attention_weights=0, layer_id=None, limited_spatial_channel_mem=False, stage=1, **kwargs):
# limited_spatial_channel_mem=True means: mems in spatial channel is consisted of {mem_text, mem_current_frame}
b, s0, h0 = k0.shape
frame_num_before = (s0-text_len-1) // frame_len # frame_num == frame_num_before or frame_num == frame_num_before+1
h = h0 // n_head
assert q0.shape[1] == 1
assert v0.shape[1] == k0.shape[1]
q0 = q0.reshape(b, 1, n_head, h).permute(0, 2, 1, 3)
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1)
if limited_spatial_channel_mem:
assert frame_num_before == 0
assert stage == 1 # not implemented for stage-2 yet
score = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T)
score[..., :text_len] += log_text_attention_weights
attention_probs_frame = F.softmax(score, dim=-1)
context_frame = torch.matmul(attention_probs_frame, v0).transpose(1, 2).reshape(b, 1, h0)
else:
score_token2text = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., :text_len])
score_token2text += log_text_attention_weights
score_frame_local0 = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., text_len+frame_num_before*frame_len:])
score_frame_all = torch.cat((score_token2text,
score_frame_local0), dim=-1)
attention_probs_frame = F.softmax(score_frame_all, dim=-1)
context_token2text = torch.matmul(attention_probs_frame[..., :text_len], v0[..., :text_len, :]) # [b, n_head, s1, h]
context_frame_local0 = torch.matmul(attention_probs_frame[..., text_len:], \
v0[:, :, text_len+frame_num_before*frame_len:, :])
context_frame = (context_token2text + context_frame_local0).transpose(1, 2).reshape(b, 1, h0)
return context_frame
class CogVideoCacheModel(BaseModel):
def __init__(self, args, transformer=None, parallel_output=True, window_size=None, cogvideo_stage=None):
super().__init__(args, transformer=transformer, parallel_output=parallel_output)
self.layout = args.layout # [64, 64+1024, 64+6*1024]
self.stage = cogvideo_stage if cogvideo_stage is not None else args.cogvideo_stage # 1 or 2
self.n_head = args.num_attention_heads
self.window_size = window_size if window_size is not None else args.window_size
frame_resolution = int(math.sqrt(self.layout[1]-self.layout[0]))
self.add_mixin('extra_position_embedding', PositionEmbeddingMixin(
args.additional_seqlen, args.hidden_size
))
if self.stage == 1:
self.add_mixin('attention_plus', FullAttentionMixin(
num_layers=args.num_layers,
hidden_size=args.hidden_size,
frame_resolution=frame_resolution,
n_head=args.num_attention_heads,
frame_num=(args.layout[2]-args.layout[0])//(args.layout[1]-args.layout[0]),
))
else:
self.add_mixin('attention_plus', WindowAttentionMixin(
num_layers=args.num_layers,
hidden_size=args.hidden_size,
frame_resolution=frame_resolution,
window_size=self.window_size,
shift_size=self.window_size//2,
n_head=args.num_attention_heads,
frame_num=(args.layout[2]-args.layout[0])//(args.layout[1]-args.layout[0]),
))
@classmethod
def add_model_specific_args(cls, parser):
group = parser.add_argument_group('VideoSwinLocalModel', 'video swin local model configurations')
group.add_argument("--layout", type=str, default='64, 464, 2064')
group.add_argument("--window-size", type=int, default=10) # 优先级在直接参数赋值之后
group.add_argument("--additional-seqlen", type=int, default=2000)
group.add_argument("--cogvideo-stage", type=int, default=1, choices=[1,2]) # 优先级在直接参数赋值之后
return parser
def disable_untrainable_params(self):
pass
def position_embedding_forward(self, position_ids, **kw_args):
if position_ids.shape[-1] > 1:
if self.stage == 1:
if position_ids[0,-1] >= (512+400):
frame_num = position_ids.shape[-1] // 400
position_embeddings = torch.cat(
(
self.transformer.position_embeddings(position_ids[..., :-400*(frame_num-1)]),
self.get_mixin('extra_position_embedding').position_embeddings(position_ids[..., -400*(frame_num-1):]-(512+400))
),
dim=-2
)
else:
position_embeddings = self.transformer.position_embeddings(position_ids)
else:
# given 3, interpolate 2
position_embeddings = torch.cat(
(
self.transformer.position_embeddings(position_ids[..., :-800]),
self.get_mixin('extra_position_embedding').position_embeddings(position_ids[..., -800:]-(512+400))
),
dim=-2
)
else:
if position_ids[0, 0] >= (512+400):
position_embeddings = self.get_mixin('extra_position_embedding').position_embeddings(position_ids-(512+400))
else:
position_embeddings = self.transformer.position_embeddings(position_ids)
return position_embeddings
def attention_forward(self, hidden_states, mask, layer_id, mems=None, log_text_attention_weights=0, text_len=0, frame_len=0, counter=0, enforce_no_swin=False, limited_spatial_channel_mem=False, **kw_args):
attn_module = self.transformer.layers[layer_id].attention
hidden_size = hidden_states.shape[-1]
# base model qkv
if mems is None:
mixed_raw_layer = attn_module.query_key_value(hidden_states)
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
assert (q0.shape[1]-text_len) % frame_len == 0
memkv0 = torch.cat((k0, v0), dim=-1)
context_text, context_frame_local_text = attention_localframe_and_text_NAR(
q0, k0, v0,
mask,
n_head=attn_module.num_attention_heads_per_partition,
text_len=text_len,
frame_len=frame_len,
frame_num=(q0.shape[1]-text_len)//frame_len,
log_text_attention_weights=log_text_attention_weights,
stage=self.stage
)
# change: self.swin_attend_to_text默认为True:
memkv1_text = self.get_mixin('attention_plus').query_key_value[layer_id](hidden_states[..., :text_len, :])[..., hidden_size:]
output_text = attn_module.dense(context_text)
if (q0.shape[1]-text_len)//frame_len > 0:
assert (q0.shape[1]-text_len) % frame_len == 0
context_frame_swin, memkv1_frame = self.get_mixin('attention_plus').attention_extra_NAR_inference(
hidden_states[:,text_len:], layer_id, memkv_text=memkv1_text, stage=self.stage)
if not enforce_no_swin:
attn_distrib = torch.sigmoid(self.get_mixin('attention_plus').attn_distribution[layer_id])
attn_distrib = attn_distrib.unsqueeze(0).unsqueeze(0)
output_frame = torch.mul(attn_module.dense(context_frame_local_text), attn_distrib)\
+torch.mul(self.get_mixin('attention_plus').dense[layer_id](context_frame_swin), 1-attn_distrib)
else:
output_frame = attn_module.dense(context_frame_local_text[..., :frame_len, :])
output = torch.cat((output_text, output_frame), dim=-2)
memkv1 = torch.cat((memkv1_text, memkv1_frame), dim=-2) if memkv1_text is not None else memkv1_frame
else:
output = output_text
memkv1 = memkv1_text
kw_args['output_this_layer']['mem_kv'] = (memkv0, memkv1)
else:
mixed_raw_layer = attn_module.query_key_value(hidden_states)
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
new_memkv0 = torch.cat((k0, v0), dim=-1)
old_k0, old_v0 = mems[0][layer_id][..., :hidden_size], mems[0][layer_id][..., hidden_size:]
context_frame_local_text = attention_localframe_and_text_AR(
q0,
torch.cat((old_k0.expand(k0.shape[0], -1, -1), k0), dim=-2),
torch.cat((old_v0.expand(v0.shape[0], -1, -1), v0), dim=-2),
n_head=attn_module.num_attention_heads_per_partition,
text_len=text_len,
frame_len=frame_len,
frame_num=None,
log_text_attention_weights=log_text_attention_weights,
layer_id=layer_id,
limited_spatial_channel_mem=limited_spatial_channel_mem,
)
old_memkv1 = mems[1][layer_id] if mems[1] is not None else None
context_frame_swin, new_memkv1 = self.get_mixin('attention_plus').attention_extra_AR_inference(hidden_states,
old_memkv1[..., text_len:, :] if old_memkv1.shape[-2]>text_len else None,
counter-text_len,
layer_id,
memkv_text=old_memkv1[..., :text_len, :],
log_text_attention_weights=log_text_attention_weights)
if not enforce_no_swin:
attn_distrib = torch.sigmoid(self.get_mixin('attention_plus').attn_distribution[layer_id])
attn_distrib = attn_distrib.unsqueeze(0).unsqueeze(0)
output = torch.mul(attn_module.dense(context_frame_local_text), attn_distrib)\
+torch.mul(self.get_mixin('attention_plus').dense[layer_id](context_frame_swin), 1-attn_distrib)
else:
output = attn_module.dense(context_frame_local_text)
kw_args['output_this_layer']['mem_kv'] = (new_memkv0, new_memkv1)
return output