Spaces:
Running
Running
File size: 5,623 Bytes
07f3d5b 2807c72 07f3d5b 6a7022c 5f01803 d7dfd61 07f3d5b 5f01803 07f3d5b bd9c730 a47f8a0 bd9c730 07f3d5b 5f01803 07f3d5b 5ee2bac 7d77191 38e35dd c541ed9 21443c3 6a7022c 77389b9 8e90038 77389b9 510389c 8e90038 07f3d5b d4b9a9c f84a603 d4b9a9c f84a603 ff186a2 601d175 d4b9a9c 601d175 d4b9a9c 07f3d5b f84a603 07f3d5b 4a90639 4bb8e69 90152c0 4bb8e69 4a90639 6ee4f1f dc9694c 07f3d5b 4bb8e69 07f3d5b 4bb8e69 81db43f 4bb8e69 4d683c9 81db43f 07f3d5b 4bb8e69 07f3d5b 4bb8e69 81db43f 4bb8e69 253b387 81db43f d0186a4 07f3d5b d4b9a9c 38ab96b 1df7a23 86cd53a 38ab96b 230a27d 86cd53a 07f3d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import requests
import json
import os
APIKEY = os.environ.get("APIKEY")
APISECRET = os.environ.get("APISECRET")
def predict(text, seed, out_seq_length, min_gen_length, sampling_strategy,
num_beams, length_penalty, no_repeat_ngram_size,
temperature, topk, topp):
global APIKEY
global APISECRET
if text == '':
return 'Input should not be empty!'
url = 'https://models.aminer.cn/os/api/api/v2/completions_130B'
payload = json.dumps({
"apikey": APIKEY,
"apisecret": APISECRET ,
"language": "zh-CN",
"prompt": text,
"length_penalty": length_penalty,
"temperature": temperature,
"top_k": topk,
"top_p": topp,
"min_gen_length": min_gen_length,
"sampling_strategy": sampling_strategy,
"num_beams": num_beams,
"max_tokens": out_seq_length,
"no_repeat_ngram": no_repeat_ngram_size,
"seed": seed
})
headers = {
'Content-Type': 'application/json'
}
try:
response = requests.request("POST", url, headers=headers, data=payload, timeout=(20, 100)).json()
except Exception as e:
return 'Timeout! Please wait a few minutes and retry'
if response['status'] == 1:
return response['message']['errmsg']
answer = response['result']['output']['raw']
if isinstance(answer, list):
answer = answer[0]
answer = answer.replace('[</s>]', '')
return answer
if __name__ == "__main__":
en_fil = ['The Starry Night is an oil-on-canvas painting by [MASK] in June 1889.']
en_gen = ['Eight planets in solar system are [gMASK]']
ch_fil = ['凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。']
ch_gen = ['三亚位于海南岛的最南端,是中国最南部的热带滨海旅游城市 [gMASK]']
en_to_ch = ['Pencil in Chinese is [MASK].']
ch_to_en = ['"我思故我在"的英文是"[MASK]"。']
examples = [en_fil, en_gen, ch_fil, ch_gen, en_to_ch, ch_to_en]
with gr.Blocks() as demo:
gr.Markdown(
"""
An Open Bilingual Pre-Trained Model. [Visit our github repo](https://github.com/THUDM/GLM-130B)
GLM-130B uses two different mask tokens: `[MASK]` for short blank filling and `[gMASK]` for left-to-right long text generation. When the input does not contain any MASK token, `[gMASK]` will be automatically appended to the end of the text. We recommend that you use `[MASK]` to try text fill-in-the-blank to reduce wait time (ideally within seconds without queuing).
""")
with gr.Row():
with gr.Column():
model_input = gr.Textbox(lines=7, placeholder='Input something in English or Chinese', label='Input')
with gr.Row():
gen = gr.Button("Generate")
clr = gr.Button("Clear")
outputs = gr.Textbox(lines=7, label='Output')
gr.Markdown(
"""
Generation Parameter
""")
with gr.Row():
with gr.Column():
seed = gr.Slider(maximum=100000, value=1234, step=1, label='Seed')
out_seq_length = gr.Slider(maximum=256, value=128, minimum=32, step=1, label='Output Sequence Length')
with gr.Column():
min_gen_length = gr.Slider(maximum=64, value=0, step=1, label='Min Generate Length')
sampling_strategy = gr.Radio(choices=['BeamSearchStrategy', 'BaseStrategy'], value='BaseStrategy', label='Search Strategy')
with gr.Row():
with gr.Column():
# beam search
gr.Markdown(
"""
BeamSearchStrategy
""")
num_beams = gr.Slider(maximum=4, value=2, minimum=1, step=1, label='Number of Beams')
length_penalty = gr.Slider(maximum=1, value=1, minimum=0, label='Length Penalty')
no_repeat_ngram_size = gr.Slider(maximum=5, value=3, minimum=1, step=1, label='No Repeat Ngram Size')
with gr.Column():
# base search
gr.Markdown(
"""
BaseStrategy
""")
temperature = gr.Slider(maximum=1, value=0.7, minimum=0, label='Temperature')
topk = gr.Slider(maximum=40, value=1, minimum=0, step=1, label='Top K')
topp = gr.Slider(maximum=1, value=0, minimum=0, label='Top P')
inputs = [model_input, seed, out_seq_length, min_gen_length, sampling_strategy, num_beams, length_penalty, no_repeat_ngram_size, temperature, topk, topp]
gen.click(fn=predict, inputs=inputs, outputs=outputs)
clr.click(fn=lambda value: gr.update(value=""), inputs=clr, outputs=model_input)
gr_examples = gr.Examples(examples=examples, inputs=model_input)
gr.Markdown(
"""
Disclaimer inspired from [BLOOM](https://huggingface.co/spaces/bigscience/bloom-book)
GLM-130B was trained on web-crawled data, so it's hard to predict how GLM-130B will respond to particular prompts; harmful or otherwise offensive content may occur without warning. We prohibit users from knowingly generating or allowing others to knowingly generate harmful content, including Hateful, Harassment, Violence, Adult, Political, Deception, etc.
""")
demo.launch() |