File size: 8,432 Bytes
175e619 b27ea07 175e619 bbe9753 175e619 b78d3a3 175e619 0836350 175e619 bbe9753 7bcec3c 175e619 d9a4f8c 175e619 7bcec3c 175e619 32d9020 175e619 32d9020 175e619 b27ea07 175e619 b27ea07 175e619 b27ea07 175e619 b27ea07 175e619 b27ea07 175e619 b27ea07 175e619 b27ea07 175e619 b27ea07 175e619 d64c69d 175e619 d64c69d b27ea07 175e619 d64c69d 175e619 b27ea07 d64c69d b27ea07 175e619 d64c69d 175e619 d64c69d b27ea07 bbe9753 175e619 d64c69d 175e619 bbe9753 175e619 b27ea07 175e619 b27ea07 175e619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
from constants import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
global data_component, filter_component
def download_csv():
# pull the results and return this file!
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset")
submission_repo.git_pull()
return CSV_DIR, gr.update(visible=True)
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
model_date:str,
LLM_type: str,
LLM_name_textbox: str,
):
if input_file is None:
return "Error! Empty file!"
upload_data = json.loads(input_file)
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset",git_user="auto-uploader",git_email="uploader@163.com")
submission_repo.git_pull()
csv_data = pd.read_csv(CSV_DIR)
if LLM_type == 'Other':
LLM_name = LLM_name_textbox
else:
LLM_name = LLM_type
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '' or "](" in model_name:
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name,
LLM_name,
model_date,
model_link
]
for key in TASK_INFO:
if key in upload_data:
new_data.append(round(100*upload_data[key],1))
else:
new_data.append(0)
# print(new_data)
# print(csv_data.loc[col-1])
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(CSV_DIR, index=False)
submission_repo.push_to_hub()
return 0
def get_baseline_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Overall", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_all_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Overall", ascending=False)
return df
def on_filter_model_size_method_change(selected_columns):
updated_data = get_all_df()
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
# print("selected_columns",'|'.join(selected_columns))
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component # .value
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LVBench", elem_id="lvbench-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
)
gr.Markdown(
TABLE_INTRODUCTION
)
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
)
data_component = gr.components.Dataframe(
value=get_baseline_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group],
outputs=data_component)
# table 2
with gr.TabItem("π About", elem_id="lvbench-tab-table", id=2):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# table 3
with gr.TabItem("π Submit here! ", elem_id="lvbench-tab-table", id=3):
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="CogVLM2-Video"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="CogVLM2-Video"
)
with gr.Column():
LLM_type = gr.Dropdown(
choices=["LLaMA-3-8B", "Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "InternLM-7B", "Other"],
label="LLM type",
multiselect=False,
value="LLaMA-3-8B",
interactive=True,
)
LLM_name_textbox = gr.Textbox(
label="LLM model (for Other)",
placeholder="LLaMA-3-8B"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://cogvlm2-video.github.io/"
)
model_date = gr.Textbox(
label="Model Date", placeholder="2024/8/22"
)
with gr.Column():
input_file = gr.components.File(label="Click to Upload a json File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
model_link,
model_date,
LLM_type,
LLM_name_textbox,
],
)
def refresh_data():
value1 = get_baseline_df()
return value1
with gr.Row():
data_run = gr.Button("Refresh")
with gr.Row():
result_download = gr.Button("Download Leaderboard")
file_download = gr.File(label="download the csv of leaderborad.", visible=False)
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
result_download.click(download_csv, inputs=None, outputs=[file_download, file_download])
block.launch()
|