File size: 8,913 Bytes
8f1e7e2
 
 
 
 
6169a19
8f1e7e2
 
 
6169a19
 
8f1e7e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6169a19
 
8f1e7e2
 
 
 
6169a19
 
 
 
 
 
 
8f1e7e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6169a19
 
7aabe2d
6169a19
 
 
 
 
 
 
8f1e7e2
 
 
 
 
 
 
 
 
5e2eed0
 
8f1e7e2
 
 
 
709cf94
8f1e7e2
 
 
 
 
 
 
 
 
 
709cf94
8f1e7e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288c9d
8f1e7e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import json
import traceback

from constants import *
from huggingface_hub import Repository
from eval_final_results import eval_final


HF_TOKEN = os.environ.get("HF_TOKEN")

global data_component, filter_component


def download_csv():
    # pull the results and return this file!
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
                                 repo_type="dataset")
    submission_repo.git_pull()
    return CSV_DIR, gr.update(visible=True)


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


def add_new_eval(
        input_file,
        model_name_textbox: str,
        revision_name_textbox: str,
        model_link: str,
        model_date:str,
        LLM_type: str,
        LLM_name_textbox: str,
):
    if input_file is None:
        return "Error! Empty file!"

    # upload_data = json.loads(input_file)

    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
                                 repo_type="dataset",git_user="auto-uploader",git_email="uploader@163.com")
    submission_repo.git_pull()
    csv_data = pd.read_csv(CSV_DIR)
    try:
        upload_data = eval_final(test_answer_file,dev_answer_file, input_file)
    except:
        error_message = traceback.format_exc()
        print("Error:", error_message)
        return


    if LLM_type == 'Other':
        LLM_name = LLM_name_textbox
    else:
        LLM_name = LLM_type

    if revision_name_textbox == '':
        col = csv_data.shape[0]
        model_name = model_name_textbox
    else:
        model_name = revision_name_textbox
        model_name_list = csv_data['Model']
        name_list = [name.split(']')[0][1:] for name in model_name_list]
        if revision_name_textbox not in name_list:
            col = csv_data.shape[0]
        else:
            col = name_list.index(revision_name_textbox)

    if model_link == '' or "](" in model_name:
        model_name = model_name  # no url
    else:
        model_name = '[' + model_name + '](' + model_link + ')'

    # add new data
    new_data = [
        model_name,
        LLM_name,
        model_date,
        model_link
    ]
    try:
        for key in TASK_INFO:
            if key in key_map:
                new_data.append(round(100*upload_data[key_map[key]],1))
            else:
                new_data.append(0)
    except:
        error_message = traceback.format_exc()
        print("Error:", error_message)
        return
    # print(new_data)
    # print(csv_data.loc[col-1])
    csv_data.loc[col] = new_data
    csv_data = csv_data.to_csv(CSV_DIR, index=False)
    submission_repo.push_to_hub()
    return 0


def get_baseline_df():
    print("SUBMISSION_URL:", SUBMISSION_URL)
    print("HF_TOKEN:", HF_TOKEN)
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
                                 repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Dev Avg", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    df = df[present_columns]
    return df


def get_all_df():
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
                                 repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Dev Avg", ascending=False)
    return df


def on_filter_model_size_method_change(selected_columns):
    updated_data = get_all_df()

    # columns:
    selected_columns = [item for item in TASK_INFO if item in selected_columns]
    present_columns = MODEL_INFO + selected_columns
    # print("selected_columns",'|'.join(selected_columns))
    updated_data = updated_data[present_columns]
    updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
    updated_headers = present_columns
    update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
    # print(updated_data,present_columns,update_datatype)
    filter_component = gr.components.Dataframe(
        value=updated_data,
        headers=updated_headers,
        type="pandas",
        datatype=update_datatype,
        interactive=False,
        visible=True,
    )

    return filter_component  # .value


block = gr.Blocks()
with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… MotionBench", elem_id="lvbench-tab-table", id=1):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        lines=10,
                    )

            gr.Markdown(
                TABLE_INTRODUCTION
            )

            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                value=AVG_INFO,
                label="Evaluation Dimension",
                interactive=True,
            )

            data_component = gr.components.Dataframe(
                value=get_baseline_df,
                headers=COLUMN_NAMES,
                type="pandas",
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
            )

            checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group],
                                  outputs=data_component)

        # table 2
        with gr.TabItem("πŸ“ About", elem_id="lvbench-tab-table", id=2):
            gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")

        # table 3 
        with gr.TabItem("πŸš€ Submit here! ", elem_id="lvbench-tab-table", id=3):
            gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="CogVLM2-Video"
                    )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder=""
                    )

                with gr.Column():
                    LLM_type = gr.Dropdown(
                        choices=["LLaMA-3-8B", "Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "InternLM-7B", "Other"],
                        label="LLM type",
                        multiselect=False,
                        value="LLaMA-3-8B",
                        interactive=True,
                    )
                    LLM_name_textbox = gr.Textbox(
                        label="LLM model (for Other)",
                        placeholder="LLaMA-3-8B"
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://cogvlm2-video.github.io/"
                    )
                    model_date = gr.Textbox(
                        label="Model Date", placeholder="2024/8/22"
                    )


            with gr.Column():
                input_file = gr.components.File(label="Click to Upload a json File", file_count="single", type='binary')
                submit_button = gr.Button("Submit Eval")

                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs=[
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        model_link,
                        model_date,
                        LLM_type,
                        LLM_name_textbox,
                    ],
                )


    def refresh_data():
        value1 = get_baseline_df()
        return value1


    with gr.Row():
        data_run = gr.Button("Refresh")
    with gr.Row():
        result_download = gr.Button("Download Leaderboard")
        file_download = gr.File(label="download the csv of leaderborad.", visible=False)
        data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
        result_download.click(download_csv, inputs=None, outputs=[file_download, file_download])

block.launch()