陈俊杰 commited on
Commit
c5475fc
·
1 Parent(s): 6c68509
Files changed (2) hide show
  1. app.py +6 -5
  2. test.py +32 -28
app.py CHANGED
@@ -268,7 +268,7 @@ elif page == "LeaderBoard":
268
  TeamId = ["baseline", "baseline", "baseline", "baseline",
269
  'ISLab', 'ISLab', 'ISLab', 'ISLab',
270
  'default5', 'default5', 'default5', 'default5',
271
- 'KNUIR', 'KNUIR', 'KNUIR', 'KNUIR'],
272
  Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o",
273
  "llama3-1_baseline5", "llama3-1_baseline6", "llama3-1-baseline7", "llama3-2-baseline",
274
  "baselinev02", "baselinev72r1", "baselinev70r1", "baselinev72r2",
@@ -289,8 +289,9 @@ elif page == "LeaderBoard":
289
  "Spearman": [0.3505, 0.1857, 0.3264, 0.4512,
290
  0, 0, 0, 0,
291
  0.4200280894403279, 0.5723981513727318, 0.3392536955889527, 0.6542301178956093,
292
- 0.02673703949665616, 0.3132279427962962, 0.19244600211698878, 0.3697144425033483],
293
  }
 
294
  df1 = pd.DataFrame(DG)
295
 
296
  TE = {
@@ -307,7 +308,7 @@ elif page == "LeaderBoard":
307
  "Spearman": [0.1352, 0.0667, 0.2867, 0.4157,
308
  0.2033137543983765, 0.35189638758373964, 0, 0,
309
  0.44950359766748854, 0.4567231163496956, 0.3284040387552273, 0.5061135134678696,
310
- 0.04302709609666947, 0.3758784332521168, 0.2019542748712654, 0.25105320709917717],
311
  }
312
  df2 = pd.DataFrame(TE)
313
 
@@ -325,7 +326,7 @@ elif page == "LeaderBoard":
325
  "Spearman": [0.4188, 0.2817, 0.5403, 0.5405,
326
  0.5830423197486431, 0.6276373633425562, 0.324348752437819, 0.6664032039425867,
327
  0.5603311161969196, 0.5987990693735654, 0.6200483357955027, 0.6021636544977567,
328
- 0.0, 0.530151784406405, 0.0, 0.5767282714406644],
329
  }
330
  df3 = pd.DataFrame(SG)
331
 
@@ -343,7 +344,7 @@ elif page == "LeaderBoard":
343
  "Spearman": [0.2443, 0.2492, 0.4630, 0.4511,
344
  0, 0, 0, 0,
345
  0.5214865171404164, 0.4479941149402397, 0.424528242404003, 0.49907660929552167,
346
- 0.41802883351668096, 0.31033689944001186, 0.1096152564140644, 0.43265604612874153],
347
  }
348
  df4 = pd.DataFrame(NFQA)
349
 
 
268
  TeamId = ["baseline", "baseline", "baseline", "baseline",
269
  'ISLab', 'ISLab', 'ISLab', 'ISLab',
270
  'default5', 'default5', 'default5', 'default5',
271
+ 'KNUIR', 'KNUIR', 'KNUIR', 'KNUIR']
272
  Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o",
273
  "llama3-1_baseline5", "llama3-1_baseline6", "llama3-1-baseline7", "llama3-2-baseline",
274
  "baselinev02", "baselinev72r1", "baselinev70r1", "baselinev72r2",
 
289
  "Spearman": [0.3505, 0.1857, 0.3264, 0.4512,
290
  0, 0, 0, 0,
291
  0.4200280894403279, 0.5723981513727318, 0.3392536955889527, 0.6542301178956093,
292
+ 0.02673703949665616, 0.3132279427962962, 0.19244600211698878, 0.3697144425033483]
293
  }
294
+
295
  df1 = pd.DataFrame(DG)
296
 
297
  TE = {
 
308
  "Spearman": [0.1352, 0.0667, 0.2867, 0.4157,
309
  0.2033137543983765, 0.35189638758373964, 0, 0,
310
  0.44950359766748854, 0.4567231163496956, 0.3284040387552273, 0.5061135134678696,
311
+ 0.04302709609666947, 0.3758784332521168, 0.2019542748712654, 0.25105320709917717]
312
  }
313
  df2 = pd.DataFrame(TE)
314
 
 
326
  "Spearman": [0.4188, 0.2817, 0.5403, 0.5405,
327
  0.5830423197486431, 0.6276373633425562, 0.324348752437819, 0.6664032039425867,
328
  0.5603311161969196, 0.5987990693735654, 0.6200483357955027, 0.6021636544977567,
329
+ 0.0, 0.530151784406405, 0.0, 0.5767282714406644]
330
  }
331
  df3 = pd.DataFrame(SG)
332
 
 
344
  "Spearman": [0.2443, 0.2492, 0.4630, 0.4511,
345
  0, 0, 0, 0,
346
  0.5214865171404164, 0.4479941149402397, 0.424528242404003, 0.49907660929552167,
347
+ 0.41802883351668096, 0.31033689944001186, 0.1096152564140644, 0.43265604612874153]
348
  }
349
  df4 = pd.DataFrame(NFQA)
350
 
test.py CHANGED
@@ -1,30 +1,34 @@
1
- data = {
2
- ('', 'teamId'): ['baseline', 'baseline', 'baseline', 'baseline'],
3
- ('', 'methods'): ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
4
- ('', 'overall'): [0,0,0,0],
5
- ('Dialogue Generation', 'accuracy'): [0.5806, 0.5483, 0.6001, 0.6472],
6
- ('Dialogue Generation', "kendall's tau"): [0.3243, 0.1739, 0.3042, 0.4167],
7
- ('Dialogue Generation', 'spearman'): [0.3505, 0.1857, 0.3264, 0.4512],
8
- ('Text Expansion', "accuracy"): [0.5107, 0.5050, 0.5461, 0.5581],
9
- ('Text Expansion', "kendall's tau"): [0.1281, 0.0635, 0.2716, 0.3864],
10
- ('Text Expansion', 'spearman'): [0.1352, 0.0667, 0.2867, 0.4157],
11
- ('Summary Generation', 'accuracy'): [0.6504, 0.6014, 0.7162, 0.7441],
12
- ('Summary Generation', "kendall's tau"): [0.3957, 0.2688, 0.5092, 0.5001],
13
- ('Summary Generation', 'spearman'): [0.4188, 0.2817, 0.5403, 0.5405],
14
- ('Non-Factoid QA', "accuracy"): [0.5935, 0.5817, 0.7000, 0.7203],
15
- ('Non-Factoid QA', "kendall's tau"): [0.2332, 0.2389, 0.4440, 0.4235],
16
- ('Non-Factoid QA', 'spearman'): [0.2443, 0.2492, 0.4630, 0.4511]
 
 
 
 
 
 
 
 
 
 
17
  }
18
 
19
- overall = [0, 0, 0, 0]
20
- for d in data:
21
- if d != ('', 'teamId') and d != ('', 'methods') and d != ('', 'overall'):
22
- for i in range(4):
23
- overall[i] += data[d][i]
24
- overall = [i / (3*4) for i in overall]
25
- data[('', 'overall')] = overall
26
- for d in data:
27
- if d != ('', 'teamId') and d != ('', 'methods'):
28
- for col in range(len(data[d])):
29
- data[d][col] = "{:.4f}".format(data[d][col])
30
- print(data)
 
1
+ import pandas as pd
2
+
3
+ TeamId = ["baseline", "baseline", "baseline", "baseline",
4
+ 'ISLab', 'ISLab', 'ISLab', 'ISLab',
5
+ 'default5', 'default5', 'default5', 'default5',
6
+ 'KNUIR', 'KNUIR', 'KNUIR', 'KNUIR'],
7
+ Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o",
8
+ "llama3-1_baseline5", "llama3-1_baseline6", "llama3-1-baseline7", "llama3-2-baseline",
9
+ "baselinev02", "baselinev72r1", "baselinev70r1", "baselinev72r2",
10
+ 'bert-base-uncased', 'gpt35turbo', 'logisticRegression', 'paraphrase-MiniLM-L6-v2']
11
+
12
+ DG = {
13
+ "TeamId": TeamId,
14
+ "Methods": Methods,
15
+ "Accuracy": [0.5806, 0.5483, 0.6001, 0.6472,
16
+ 0, 0, 0, 0,
17
+ 0.631700513538749, 0.7111356209150326, 0.6176633986928104, 0.735954715219421,
18
+ 0.5073529411764706, 0.5104038281979459, 0.5405182072829132, 0.5156874416433239],
19
+ "Kendall's Tau": [0.3243, 0.1739, 0.3042, 0.4167,
20
+ 0, 0, 0, 0,
21
+ 0.38961572200778516, 0.5285302196320519, 0.31022946186879186, 0.5974703857412484,
22
+ 0.024753688574416864, 0.2838365040871617, 0.18291748486237186, 0.334110095650077],
23
+ "Spearman": [0.3505, 0.1857, 0.3264, 0.4512,
24
+ 0, 0, 0, 0,
25
+ 0.4200280894403279, 0.5723981513727318, 0.3392536955889527, 0.6542301178956093,
26
+ 0.02673703949665616, 0.3132279427962962, 0.19244600211698878, 0.3697144425033483]
27
  }
28
 
29
+ for key, value in DG.items():
30
+ print(len(value))
31
+
32
+ df1 = pd.DataFrame(DG)
33
+
34
+ print(df1)