陈俊杰
commited on
Commit
·
c5475fc
1
Parent(s):
6c68509
1230
Browse files
app.py
CHANGED
@@ -268,7 +268,7 @@ elif page == "LeaderBoard":
|
|
268 |
TeamId = ["baseline", "baseline", "baseline", "baseline",
|
269 |
'ISLab', 'ISLab', 'ISLab', 'ISLab',
|
270 |
'default5', 'default5', 'default5', 'default5',
|
271 |
-
'KNUIR', 'KNUIR', 'KNUIR', 'KNUIR']
|
272 |
Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o",
|
273 |
"llama3-1_baseline5", "llama3-1_baseline6", "llama3-1-baseline7", "llama3-2-baseline",
|
274 |
"baselinev02", "baselinev72r1", "baselinev70r1", "baselinev72r2",
|
@@ -289,8 +289,9 @@ elif page == "LeaderBoard":
|
|
289 |
"Spearman": [0.3505, 0.1857, 0.3264, 0.4512,
|
290 |
0, 0, 0, 0,
|
291 |
0.4200280894403279, 0.5723981513727318, 0.3392536955889527, 0.6542301178956093,
|
292 |
-
0.02673703949665616, 0.3132279427962962, 0.19244600211698878, 0.3697144425033483]
|
293 |
}
|
|
|
294 |
df1 = pd.DataFrame(DG)
|
295 |
|
296 |
TE = {
|
@@ -307,7 +308,7 @@ elif page == "LeaderBoard":
|
|
307 |
"Spearman": [0.1352, 0.0667, 0.2867, 0.4157,
|
308 |
0.2033137543983765, 0.35189638758373964, 0, 0,
|
309 |
0.44950359766748854, 0.4567231163496956, 0.3284040387552273, 0.5061135134678696,
|
310 |
-
0.04302709609666947, 0.3758784332521168, 0.2019542748712654, 0.25105320709917717]
|
311 |
}
|
312 |
df2 = pd.DataFrame(TE)
|
313 |
|
@@ -325,7 +326,7 @@ elif page == "LeaderBoard":
|
|
325 |
"Spearman": [0.4188, 0.2817, 0.5403, 0.5405,
|
326 |
0.5830423197486431, 0.6276373633425562, 0.324348752437819, 0.6664032039425867,
|
327 |
0.5603311161969196, 0.5987990693735654, 0.6200483357955027, 0.6021636544977567,
|
328 |
-
0.0, 0.530151784406405, 0.0, 0.5767282714406644]
|
329 |
}
|
330 |
df3 = pd.DataFrame(SG)
|
331 |
|
@@ -343,7 +344,7 @@ elif page == "LeaderBoard":
|
|
343 |
"Spearman": [0.2443, 0.2492, 0.4630, 0.4511,
|
344 |
0, 0, 0, 0,
|
345 |
0.5214865171404164, 0.4479941149402397, 0.424528242404003, 0.49907660929552167,
|
346 |
-
0.41802883351668096, 0.31033689944001186, 0.1096152564140644, 0.43265604612874153]
|
347 |
}
|
348 |
df4 = pd.DataFrame(NFQA)
|
349 |
|
|
|
268 |
TeamId = ["baseline", "baseline", "baseline", "baseline",
|
269 |
'ISLab', 'ISLab', 'ISLab', 'ISLab',
|
270 |
'default5', 'default5', 'default5', 'default5',
|
271 |
+
'KNUIR', 'KNUIR', 'KNUIR', 'KNUIR']
|
272 |
Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o",
|
273 |
"llama3-1_baseline5", "llama3-1_baseline6", "llama3-1-baseline7", "llama3-2-baseline",
|
274 |
"baselinev02", "baselinev72r1", "baselinev70r1", "baselinev72r2",
|
|
|
289 |
"Spearman": [0.3505, 0.1857, 0.3264, 0.4512,
|
290 |
0, 0, 0, 0,
|
291 |
0.4200280894403279, 0.5723981513727318, 0.3392536955889527, 0.6542301178956093,
|
292 |
+
0.02673703949665616, 0.3132279427962962, 0.19244600211698878, 0.3697144425033483]
|
293 |
}
|
294 |
+
|
295 |
df1 = pd.DataFrame(DG)
|
296 |
|
297 |
TE = {
|
|
|
308 |
"Spearman": [0.1352, 0.0667, 0.2867, 0.4157,
|
309 |
0.2033137543983765, 0.35189638758373964, 0, 0,
|
310 |
0.44950359766748854, 0.4567231163496956, 0.3284040387552273, 0.5061135134678696,
|
311 |
+
0.04302709609666947, 0.3758784332521168, 0.2019542748712654, 0.25105320709917717]
|
312 |
}
|
313 |
df2 = pd.DataFrame(TE)
|
314 |
|
|
|
326 |
"Spearman": [0.4188, 0.2817, 0.5403, 0.5405,
|
327 |
0.5830423197486431, 0.6276373633425562, 0.324348752437819, 0.6664032039425867,
|
328 |
0.5603311161969196, 0.5987990693735654, 0.6200483357955027, 0.6021636544977567,
|
329 |
+
0.0, 0.530151784406405, 0.0, 0.5767282714406644]
|
330 |
}
|
331 |
df3 = pd.DataFrame(SG)
|
332 |
|
|
|
344 |
"Spearman": [0.2443, 0.2492, 0.4630, 0.4511,
|
345 |
0, 0, 0, 0,
|
346 |
0.5214865171404164, 0.4479941149402397, 0.424528242404003, 0.49907660929552167,
|
347 |
+
0.41802883351668096, 0.31033689944001186, 0.1096152564140644, 0.43265604612874153]
|
348 |
}
|
349 |
df4 = pd.DataFrame(NFQA)
|
350 |
|
test.py
CHANGED
@@ -1,30 +1,34 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
data[('', 'overall')] = overall
|
26 |
-
for d in data:
|
27 |
-
if d != ('', 'teamId') and d != ('', 'methods'):
|
28 |
-
for col in range(len(data[d])):
|
29 |
-
data[d][col] = "{:.4f}".format(data[d][col])
|
30 |
-
print(data)
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
TeamId = ["baseline", "baseline", "baseline", "baseline",
|
4 |
+
'ISLab', 'ISLab', 'ISLab', 'ISLab',
|
5 |
+
'default5', 'default5', 'default5', 'default5',
|
6 |
+
'KNUIR', 'KNUIR', 'KNUIR', 'KNUIR'],
|
7 |
+
Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o",
|
8 |
+
"llama3-1_baseline5", "llama3-1_baseline6", "llama3-1-baseline7", "llama3-2-baseline",
|
9 |
+
"baselinev02", "baselinev72r1", "baselinev70r1", "baselinev72r2",
|
10 |
+
'bert-base-uncased', 'gpt35turbo', 'logisticRegression', 'paraphrase-MiniLM-L6-v2']
|
11 |
+
|
12 |
+
DG = {
|
13 |
+
"TeamId": TeamId,
|
14 |
+
"Methods": Methods,
|
15 |
+
"Accuracy": [0.5806, 0.5483, 0.6001, 0.6472,
|
16 |
+
0, 0, 0, 0,
|
17 |
+
0.631700513538749, 0.7111356209150326, 0.6176633986928104, 0.735954715219421,
|
18 |
+
0.5073529411764706, 0.5104038281979459, 0.5405182072829132, 0.5156874416433239],
|
19 |
+
"Kendall's Tau": [0.3243, 0.1739, 0.3042, 0.4167,
|
20 |
+
0, 0, 0, 0,
|
21 |
+
0.38961572200778516, 0.5285302196320519, 0.31022946186879186, 0.5974703857412484,
|
22 |
+
0.024753688574416864, 0.2838365040871617, 0.18291748486237186, 0.334110095650077],
|
23 |
+
"Spearman": [0.3505, 0.1857, 0.3264, 0.4512,
|
24 |
+
0, 0, 0, 0,
|
25 |
+
0.4200280894403279, 0.5723981513727318, 0.3392536955889527, 0.6542301178956093,
|
26 |
+
0.02673703949665616, 0.3132279427962962, 0.19244600211698878, 0.3697144425033483]
|
27 |
}
|
28 |
|
29 |
+
for key, value in DG.items():
|
30 |
+
print(len(value))
|
31 |
+
|
32 |
+
df1 = pd.DataFrame(DG)
|
33 |
+
|
34 |
+
print(df1)
|
|
|
|
|
|
|
|
|
|
|
|