Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import re | |
from decord import VideoReader, cpu | |
from PIL import Image | |
import numpy as np | |
import transformers | |
import spaces | |
from typing import Dict, Optional, Sequence, List | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import sys | |
# sys.path.append('/mnt/lzy/oryx-demo') | |
from oryx.conversation import conv_templates, SeparatorStyle | |
from oryx.model.builder import load_pretrained_model | |
from oryx.utils import disable_torch_init | |
from oryx.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video_genli | |
from oryx.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX | |
model_path = "THUdyh/Oryx-7B" | |
model_name = get_model_name_from_path(model_path) | |
overwrite_config = {} | |
overwrite_config["mm_resampler_type"] = "dynamic_compressor" | |
overwrite_config["patchify_video_feature"] = False | |
overwrite_config["attn_implementation"] = "sdpa" if torch.__version__ >= "2.1.2" else "eager" | |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, device_map="cpu", overwrite_config=overwrite_config) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device).eval() | |
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: | |
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} | |
im_start, im_end = tokenizer.additional_special_tokens_ids | |
nl_tokens = tokenizer("\n").input_ids | |
_system = tokenizer("system").input_ids + nl_tokens | |
_user = tokenizer("user").input_ids + nl_tokens | |
_assistant = tokenizer("assistant").input_ids + nl_tokens | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
source = sources | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens | |
input_id += system | |
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens | |
assert len(input_id) == len(target) | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
if has_image and sentence["value"] is not None and "<image>" in sentence["value"]: | |
num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) | |
texts = sentence["value"].split('<image>') | |
_input_id = tokenizer(role).input_ids + nl_tokens | |
for i,text in enumerate(texts): | |
_input_id += tokenizer(text).input_ids | |
if i<len(texts)-1: | |
_input_id += [IMAGE_TOKEN_INDEX] + nl_tokens | |
_input_id += [im_end] + nl_tokens | |
assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image | |
else: | |
if sentence["value"] is None: | |
_input_id = tokenizer(role).input_ids + nl_tokens | |
else: | |
_input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens | |
input_id += _input_id | |
if role == "<|im_start|>user": | |
_target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens | |
elif role == "<|im_start|>assistant": | |
_target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens | |
else: | |
raise NotImplementedError | |
target += _target | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return input_ids | |
def oryx_inference(video, text): | |
vr = VideoReader(video, ctx=cpu(0)) | |
total_frame_num = len(vr) | |
fps = round(vr.get_avg_fps()) | |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int) | |
frame_idx = uniform_sampled_frames.tolist() | |
spare_frames = vr.get_batch(frame_idx).asnumpy() | |
video = [Image.fromarray(frame) for frame in spare_frames] | |
conv_mode = "qwen_1_5" | |
question = text | |
question = "<image>\n" + question | |
conv = conv_templates[conv_mode].copy() | |
conv.append_message(conv.roles[0], question) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = preprocess_qwen([{'from': 'human','value': question},{'from': 'gpt','value': None}], tokenizer, has_image=True).to(device) | |
video_processed = [] | |
for idx, frame in enumerate(video): | |
image_processor.do_resize = False | |
image_processor.do_center_crop = False | |
frame = process_anyres_video_genli(frame, image_processor) | |
if frame_idx is not None and idx in frame_idx: | |
video_processed.append(frame.unsqueeze(0)) | |
elif frame_idx is None: | |
video_processed.append(frame.unsqueeze(0)) | |
if frame_idx is None: | |
frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() | |
video_processed = torch.cat(video_processed, dim=0).bfloat16().to(device) | |
video_processed = (video_processed, video_processed) | |
video_data = (video_processed, (384, 384), "video") | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
inputs=input_ids, | |
images=video_data[0][0], | |
images_highres=video_data[0][1], | |
modalities=video_data[2], | |
do_sample=False, | |
temperature=0, | |
max_new_tokens=1024, | |
use_cache=True, | |
) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
outputs = outputs.strip() | |
return outputs | |
# Define input and output for the Gradio interface | |
demo = gr.Interface( | |
fn=oryx_inference, | |
inputs=[gr.Video(label="Input Video"), gr.Textbox(label="Input Text")], | |
outputs="text", | |
title="Oryx Inference", | |
description="This is a demo for Oryx inference." | |
) | |
# Launch the Gradio app | |
demo.launch() | |