Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import warnings | |
from dataclasses import dataclass | |
from functools import partial | |
from typing import ( | |
Callable, | |
Dict, | |
Final, | |
List, | |
Literal, | |
Optional, | |
Sequence, | |
Set, | |
Tuple, | |
Type, | |
Union, | |
) | |
from torch.utils.checkpoint import checkpoint | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
try: | |
from timm.layers import ( | |
AttentionPoolLatent, | |
DropPath, | |
LayerType, | |
Mlp, | |
PatchDropout, | |
PatchEmbed, | |
resample_abs_pos_embed, | |
) | |
from timm.models._manipulate import checkpoint_seq, named_apply | |
except: | |
print('Wrong timm version') | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from typing import Optional | |
import logging | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import os | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) # noqa: E741 | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | |
# type: (torch.Tensor, float, float, float, float) -> torch.Tensor | |
r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first | |
convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype. | |
Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn | |
from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
with torch.no_grad(): | |
dtype = tensor.dtype | |
tensor_fp32 = tensor.float() | |
tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b) | |
tensor_dtype = tensor_fp32.to(dtype=dtype) | |
tensor.copy_(tensor_dtype) | |
def init_weights(self): | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5) | |
trunc_normal_(self.latent, std=self.latent_dim**-0.5) | |
def init_weights_vit_timm(module: nn.Module, name: str = "") -> None: | |
"""ViT weight initialization, original timm impl (for reproducibility)""" | |
if isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif hasattr(module, "init_weights"): | |
module.init_weights() | |
class Attention(nn.Module): | |
fused_attn: Final[bool] | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_norm: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
norm_layer: nn.Module = nn.LayerNorm, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
# self.fused_attn = use_fused_attn() | |
self.fused_attn = True | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity() | |
def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B, N, 3, self.num_heads, self.head_dim) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = qkv.unbind(0) | |
q, k = self.q_norm(q), self.k_norm(k) | |
if cu_slens is not None: | |
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
max_seqlen = torch.max(cu_slens[1:] - cu_slens[:-1]).item() | |
x = flash_attn_varlen_func( | |
q.squeeze(0), | |
k.squeeze(0), | |
v.squeeze(0), | |
cu_seqlens_q=cu_slens, | |
cu_seqlens_k=cu_slens, | |
max_seqlen_q=max_seqlen, | |
max_seqlen_k=max_seqlen, | |
softmax_scale=self.scale, | |
causal=False, | |
) | |
x = x.reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
else: | |
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
x = flash_attn_func(q, k, v, softmax_scale=self.scale) # -> b, n, h, c | |
x = x.reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class LayerScale(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
init_values: float = 1e-5, | |
inplace: bool = False, | |
) -> None: | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = False, | |
qk_norm: bool = False, | |
proj_drop: float = 0.0, | |
attn_drop: float = 0.0, | |
init_values: Optional[float] = None, | |
drop_path: float = 0.0, | |
act_layer: nn.Module = nn.GELU, | |
norm_layer: nn.Module = nn.LayerNorm, | |
mlp_layer: nn.Module = Mlp, | |
) -> None: | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_norm=qk_norm, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
norm_layer=norm_layer, | |
) | |
self.ls1 = ( | |
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
) | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = mlp_layer( | |
in_features=dim, | |
hidden_features=int(dim * mlp_ratio), | |
act_layer=act_layer, | |
drop=proj_drop, | |
) | |
self.ls2 = ( | |
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
) | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor: | |
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_slens=cu_slens))) | |
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) | |
return x | |
class VisionTransformer(nn.Module): | |
"""Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
""" | |
dynamic_img_size: Final[bool] | |
def __init__( | |
self, | |
img_size: Union[int, Tuple[int, int]] = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
in_chans: int = 3, | |
num_classes: int = 1000, | |
global_pool: Literal["", "avg", "token", "map"] = "token", | |
embed_dim: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = True, | |
qk_norm: bool = False, | |
init_values: Optional[float] = None, | |
class_token: bool = True, | |
no_embed_class: bool = False, | |
reg_tokens: int = 0, | |
pre_norm: bool = False, | |
fc_norm: Optional[bool] = None, | |
dynamic_img_size: bool = False, | |
dynamic_img_pad: bool = False, | |
drop_rate: float = 0.0, | |
pos_drop_rate: float = 0.0, | |
patch_drop_rate: float = 0.0, | |
proj_drop_rate: float = 0.0, | |
attn_drop_rate: float = 0.0, | |
drop_path_rate: float = 0.0, | |
weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "", | |
embed_layer: Callable = PatchEmbed, | |
norm_layer: Optional[LayerType] = None, | |
act_layer: Optional[LayerType] = None, | |
strict_img_size: bool = False, | |
block_fn: Type[nn.Module] = Block, | |
mlp_layer: Type[nn.Module] = Mlp, | |
ignore_head: bool = False, | |
) -> None: | |
""" | |
Args: | |
img_size: Input image size. | |
patch_size: Patch size. | |
in_chans: Number of image input channels. | |
num_classes: Mumber of classes for classification head. | |
global_pool: Type of global pooling for final sequence (default: 'token'). | |
embed_dim: Transformer embedding dimension. | |
depth: Depth of transformer. | |
num_heads: Number of attention heads. | |
mlp_ratio: Ratio of mlp hidden dim to embedding dim. | |
qkv_bias: Enable bias for qkv projections if True. | |
init_values: Layer-scale init values (layer-scale enabled if not None). | |
class_token: Use class token. | |
no_embed_class: Don't include position embeddings for class (or reg) tokens. | |
reg_tokens: Number of register tokens. | |
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'. | |
drop_rate: Head dropout rate. | |
pos_drop_rate: Position embedding dropout rate. | |
attn_drop_rate: Attention dropout rate. | |
drop_path_rate: Stochastic depth rate. | |
weight_init: Weight initialization scheme. | |
embed_layer: Patch embedding layer. | |
norm_layer: Normalization layer. | |
act_layer: MLP activation layer. | |
block_fn: Transformer block layer. | |
""" | |
super().__init__() | |
assert global_pool in ("", "avg", "token", "map") | |
assert class_token or global_pool != "token" | |
use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm | |
# norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6) | |
# act_layer = get_act_layer(act_layer) or nn.GELU | |
norm_layer = partial(nn.LayerNorm, eps=1e-6) | |
act_layer = nn.GELU | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = self.embed_dim = ( | |
embed_dim # num_features for consistency with other models | |
) | |
self.num_prefix_tokens = 1 if class_token else 0 | |
self.num_prefix_tokens += reg_tokens | |
self.num_reg_tokens = reg_tokens | |
self.has_class_token = class_token | |
self.no_embed_class = ( | |
no_embed_class # don't embed prefix positions (includes reg) | |
) | |
self.dynamic_img_size = dynamic_img_size | |
self.grad_checkpointing = False | |
self.ignore_head = ignore_head | |
embed_args = {} | |
if dynamic_img_size: | |
# flatten deferred until after pos embed | |
embed_args.update(dict(strict_img_size=False, output_fmt="NHWC")) | |
self.patch_embed = embed_layer( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) | |
dynamic_img_pad=dynamic_img_pad, | |
strict_img_size=strict_img_size, | |
**embed_args, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = ( | |
nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None | |
) | |
self.reg_token = ( | |
nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None | |
) | |
embed_len = ( | |
num_patches if no_embed_class else num_patches + self.num_prefix_tokens | |
) | |
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) | |
self.pos_drop = nn.Dropout(p=pos_drop_rate) | |
if patch_drop_rate > 0: | |
self.patch_drop = PatchDropout( | |
patch_drop_rate, | |
num_prefix_tokens=self.num_prefix_tokens, | |
) | |
else: | |
self.patch_drop = nn.Identity() | |
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
self.blocks = nn.Sequential( | |
*[ | |
block_fn( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_norm=qk_norm, | |
init_values=init_values, | |
proj_drop=proj_drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
mlp_layer=mlp_layer, | |
) | |
for i in range(depth) | |
] | |
) | |
def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None: | |
assert mode in ("jax", "jax_nlhb", "moco", "") | |
# head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0 | |
trunc_normal_(self.pos_embed, std=0.02) | |
if self.cls_token is not None: | |
nn.init.normal_(self.cls_token, std=1e-6) | |
named_apply(init_weights_vit_timm, self) | |
def no_weight_decay(self) -> Set: | |
return {"pos_embed", "cls_token", "dist_token"} | |
def group_matcher(self, coarse: bool = False) -> Dict: | |
return dict( | |
stem=r"^cls_token|pos_embed|patch_embed", # stem and embed | |
blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))], | |
) | |
def set_grad_checkpointing(self, enable: bool = True) -> None: | |
self.grad_checkpointing = enable | |
def get_classifier(self) -> nn.Module: | |
return self.head | |
def reset_classifier(self, num_classes: int, global_pool=None) -> None: | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ("", "avg", "token", "map") | |
if global_pool == "map" and self.attn_pool is None: | |
assert ( | |
False | |
), "Cannot currently add attention pooling in reset_classifier()." | |
elif global_pool != "map " and self.attn_pool is not None: | |
self.attn_pool = None # remove attention pooling | |
self.global_pool = global_pool | |
self.head = ( | |
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
) | |
def rescale_positional_embedding(self, out_size): | |
h, w = out_size | |
pos_embed_shape = int((self.pos_embed.shape[1]) ** 0.5) | |
if (h, w) == (pos_embed_shape, pos_embed_shape): | |
return self.pos_embed | |
rescaled_positional_embedding = \ | |
self.pos_embed.new_zeros(1, h*w, self.pos_embed.shape[2]) | |
pe_2d = self.pos_embed[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape) | |
pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w) | |
rescaled_positional_embedding[0] = pe_2d.T.contiguous() | |
return rescaled_positional_embedding | |
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: | |
if self.dynamic_img_size: | |
B, H, W, C = x.shape | |
pos_embed = resample_abs_pos_embed( | |
self.pos_embed, | |
(H, W), | |
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, | |
) | |
x = x.view(B, -1, C) | |
else: | |
pos_embed = self.pos_embed | |
to_cat = [] | |
if self.cls_token is not None: | |
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) | |
if self.reg_token is not None: | |
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) | |
if self.no_embed_class: | |
# deit-3, updated JAX (big vision) | |
# position embedding does not overlap with class token, add then concat | |
x = x + pos_embed | |
if to_cat: | |
x = torch.cat(to_cat + [x], dim=1) | |
else: | |
# original timm, JAX, and deit vit impl | |
# pos_embed has entry for class token, concat then add | |
if to_cat: | |
x = torch.cat(to_cat + [x], dim=1) | |
x = x + pos_embed | |
return self.pos_drop(x) | |
def _intermediate_layers( | |
self, | |
x: torch.Tensor, | |
n: Union[int, Sequence] = 1, | |
) -> List[torch.Tensor]: | |
outputs, num_blocks = [], len(self.blocks) | |
take_indices = set( | |
range(num_blocks - n, num_blocks) if isinstance(n, int) else n | |
) | |
# forward pass | |
x = self.patch_embed(x) | |
x = self._pos_embed(x) | |
x = self.patch_drop(x) | |
x = self.norm_pre(x) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i in take_indices: | |
outputs.append(x) | |
return outputs | |
def get_intermediate_layers( | |
self, | |
x: torch.Tensor, | |
n: Union[int, Sequence] = 1, | |
reshape: bool = False, | |
return_prefix_tokens: bool = False, | |
norm: bool = False, | |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: | |
"""Intermediate layer accessor (NOTE: This is a WIP experiment). | |
Inspired by DINO / DINOv2 interface | |
""" | |
# take last n blocks if n is an int, if in is a sequence, select by matching indices | |
outputs = self._intermediate_layers(x, n) | |
if norm: | |
outputs = [self.norm(out) for out in outputs] | |
prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs] | |
outputs = [out[:, self.num_prefix_tokens :] for out in outputs] | |
if reshape: | |
grid_size = self.patch_embed.grid_size | |
outputs = [ | |
out.reshape(x.shape[0], grid_size[0], grid_size[1], -1) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
for out in outputs | |
] | |
if return_prefix_tokens: | |
return tuple(zip(outputs, prefix_tokens)) | |
return tuple(outputs) | |
def forward_features_list(self, x_list): | |
x_all = [] | |
image_sizes = [] | |
for x in x_list: | |
bs, _, h, w = x.shape | |
# fix patch size=14 in datasets | |
pad_h = (self.patch_embed.patch_size[0] - h % self.patch_embed.patch_size[0]) % self.patch_embed.patch_size[0] | |
pad_w = (self.patch_embed.patch_size[1] - w % self.patch_embed.patch_size[1]) % self.patch_embed.patch_size[1] | |
x = F.pad(x, (0, pad_w, 0, pad_h)) | |
bs, _, h, w = x.shape | |
h = h // self.patch_embed.patch_size[0] | |
w = w // self.patch_embed.patch_size[1] | |
x = self.patch_embed(x) | |
x = x + self.rescale_positional_embedding(out_size=(h, w)) | |
x = self.patch_drop(x) | |
x = self.norm_pre(x) | |
x_all.append(x) | |
image_sizes.append((h, w)) | |
slen = [xi.size(1) for xi in x_all] | |
x = torch.cat(x_all, dim=1) | |
cu_indices = [0, ] | |
for i in slen: | |
cu_indices.append(cu_indices[-1] + i) | |
cu_slens = torch.tensor(cu_indices, dtype=torch.int32).to(x.device) | |
for idx, blk in enumerate(self.blocks): | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(blk, x, cu_slens, use_reentrant=True) | |
else: | |
x = blk(x, cu_slens=cu_slens) | |
feats = x.split(slen, dim=1) #[(1, slen, c)] | |
return feats, image_sizes | |
def forward_features(self, x: torch.Tensor) -> torch.Tensor: | |
bs, _, h, w = x.shape | |
h = h // self.patch_embed.patch_size[0] | |
w = w // self.patch_embed.patch_size[1] | |
x = self.patch_embed(x) | |
# x = self._pos_embed(x) | |
x = x + self.rescale_positional_embedding(out_size=(h, w)) | |
x = self.patch_drop(x) | |
x = self.norm_pre(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
return x, (h, w) | |
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: | |
x = self.norm(x) | |
if self.attn_pool is not None: | |
x = self.attn_pool(x) | |
elif self.global_pool == "avg": | |
x = x[:, self.num_prefix_tokens :].mean(dim=1) | |
elif self.global_pool: | |
x = x[:, 0] # class token | |
x = self.fc_norm(x) | |
x = self.head_drop(x) | |
return x if pre_logits else self.head(x) | |
def forward(self, x, cal_attn_pool=False): | |
if type(x) is list: | |
x, image_sizes = self.forward_features_list(x) | |
return x, image_sizes, None | |
else: | |
x, image_sizes = self.forward_features(x) | |
return x, image_sizes, None | |
class SigLIPVisionCfg: | |
width: int = 1152 | |
layers: Union[Tuple[int, int, int, int], int] = 27 | |
heads: int = 16 | |
patch_size: int = 14 | |
image_size: Union[Tuple[int, int], int] = 336 | |
global_pool: str = "map" | |
mlp_ratio: float = 3.7362 | |
class_token: bool = False | |
num_classes: int = 0 | |
use_checkpoint: bool = False | |
SigLIP_MODEL_CONFIG = { | |
"siglip_so400m_patch14_384": { | |
"image_size": 384, | |
"patch_size": 14, | |
"width": 1152, | |
"layers": 27, | |
"heads": 16, | |
"mlp_ratio": 3.7362, | |
"global_pool": "map", | |
"use_checkpoint": False, | |
}, | |
"siglip_so400m_patch16_384": { | |
"image_size": 384, | |
"patch_size": 16, | |
"width": 1152, | |
"layers": 27, | |
"heads": 16, | |
"mlp_ratio": 3.7362, | |
"global_pool": "map", | |
"use_checkpoint": False, | |
}, | |
"siglip_so400m_patch14_224": { | |
"image_size": 224, | |
"patch_size": 14, | |
"width": 1152, | |
"layers": 27, | |
"heads": 16, | |
"mlp_ratio": 3.7362, | |
"global_pool": "map", | |
"use_checkpoint": False, | |
}, | |
"siglip_large_patch16_384": { | |
"image_size": 384, | |
"patch_size": 16, | |
"width": 1024, | |
"layers": 24, | |
"heads": 16, | |
"mlp_ratio": 4, | |
"global_pool": "map", | |
"use_checkpoint": False, | |
}, | |
} | |
def resize_evaclip_pos_embed(model: VisionTransformer, interpolation: str = 'bicubic'): | |
# interpolate position embedding | |
orig_size = 24 | |
new_size = 128 | |
pos_tokens = model.pos_embed | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, model.embed_dim).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode=interpolation, align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
model.pos_embed = nn.Parameter(pos_tokens, requires_grad=True) | |
return model | |
def create_siglip_vit( | |
model_name: str = "siglip_so400m_patch14_384", | |
image_size: int = 384, | |
select_layer: int = -1, | |
path: str = "", | |
gradient_checkpointing: bool = False, | |
**kwargs, | |
): | |
assert ( | |
model_name in SigLIP_MODEL_CONFIG.keys() | |
), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}" | |
vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name]) | |
if select_layer <= 0: | |
layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1) | |
else: | |
layers = min(vision_cfg.layers, select_layer) | |
model = VisionTransformer( | |
img_size=2048, | |
patch_size=16, | |
embed_dim=vision_cfg.width, | |
depth=layers, | |
num_heads=vision_cfg.heads, | |
mlp_ratio=vision_cfg.mlp_ratio, | |
class_token=vision_cfg.class_token, | |
global_pool=vision_cfg.global_pool, | |
dynamic_img_pad=False, | |
strict_img_size=False, | |
ignore_head=kwargs.get("ignore_head", False), | |
weight_init=kwargs.get("weight_init", "skip"), | |
num_classes=0 | |
) | |
# if path is not None and os.path.exists(path): | |
# ckpt = path | |
# else: | |
# raise ValueError(f"Model checkpoint not found at {path}") | |
# state_dict = torch.load(ckpt, map_location="cpu") | |
# print('loading vision backbone from', path) | |
# msg = model.load_state_dict(state_dict, strict=False) | |
# print(msg) | |
if gradient_checkpointing: | |
model.set_grad_checkpointing(True) | |
return model | |
import os | |
from transformers import CLIPImageProcessor | |
import torch.distributed as dist | |
class OryxViTWrapper(nn.Module): | |
def __init__(self, vision_tower, path, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.args = args | |
self.path = path | |
self.select_layer = -1 | |
if self.select_layer < -1: self.select_layer += 1 | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
self.output_dim = 1152 | |
self.vision_tower = create_siglip_vit(path=self.path, model_name='siglip_so400m_patch16_384', | |
gradient_checkpointing=False) | |
if not delay_load: | |
self.load_model() | |
elif getattr(args, "unfreeze_mm_vision_tower", False): | |
# TODO: better detector is needed. | |
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") | |
self.load_model() | |
def load_model(self, device_map=None): | |
if self.is_loaded: | |
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) | |
return | |
self.image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
self.image_processor.image_mean = [0.5, 0.5, 0.5] | |
self.image_processor.image_std = [0.5, 0.5, 0.5] | |
print("Loading vision model...") | |
# self.vision_tower = create_siglip_vit(path=self.path, model_name='siglip_so400m_patch16_384', | |
# gradient_checkpointing=False) | |
for p in self.vision_tower.parameters(): | |
p.requires_grad = False | |
self.vision_tower.eval() | |
self.is_loaded = True | |
def train(self, mode = True): | |
self.training = mode | |
if self.is_loaded: | |
self.vision_tower.eval() | |
def forward_func(self, images, force_fix_size=False, cal_attn_pool=False): | |
if type(images) is list: | |
xs = [x.to(self.dtype) for x in images] | |
image_features, img_size, cls_token = self.vision_tower(xs, cal_attn_pool=cal_attn_pool) | |
image_features = [x.to(images[0].dtype) for x in image_features] | |
else: | |
image_forward_outs, img_size, cls_token = self.vision_tower(images.to(self.dtype), cal_attn_pool=cal_attn_pool) | |
image_features = image_forward_outs.to(images.dtype) | |
return image_features, img_size, cls_token | |
def forward(self, images, cal_attn_pool=False): | |
with torch.no_grad(): | |
image_features, img_size, cls_token = self.forward_func(images, cal_attn_pool=cal_attn_pool) | |
return image_features, img_size | |
def dummy_feature(self): | |
return torch.zeros(1, 1152, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.pos_embed.dtype | |
def device(self): | |
return self.vision_tower.pos_embed.device | |
def hidden_size(self): | |
return self.output_dim | |
def config(self): | |
return type('OryxConfigWrapper', (), { | |
'patch_size': 16, | |
})() | |