Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,763 Bytes
e368cec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import argparse
import code
import datetime
import json
import os
from pytz import timezone
import time
import pandas as pd
from tqdm import tqdm
import csv
import base64
from icecream import ic
from openai import OpenAI
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_log_files(max_num_files=None):
dates = []
for month in [2, 3]:
for day in range(1, 32):
dates.append(f"2024-{month:02d}-{day:02d}")
num_servers = 1
filenames = []
for d in dates:
for i in range(num_servers):
# name = os.path.expanduser(f"~/fastchat_logs/server{i}/{d}-conv.json")
name = os.path.expanduser(f"vision-arena-logs/{d}-conv.json")
if os.path.exists(name):
filenames.append(name)
max_num_files = max_num_files or len(filenames)
filenames = filenames[-max_num_files:]
return filenames
def pretty_print_conversation(messages):
for role, msg in messages:
print(f"[[{role}]]: {msg}")
def get_gpt4v_response(client, img_bs64=None, text_prompt="", use_vision=False):
if use_vision:
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": text_prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_bs64}"
}
},
],
}
],
max_tokens=100,
)
else:
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": text_prompt},
],
}
],
max_tokens=100,
)
return response.choices[0].message.content
task_template_map = {
"image_caption": "Give me the semantic alignment score between the given image and the given caption: \"{generated_sentence}\" on a scale of 0-100. Only reply the score value.",
"vqa": "Rate the answer correctness regarding the question within the context of the given image on a scale of 0-100. Only reply the score value.",
"pair_rate_old": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"\n\n[System]\nGiven the instruction and the image, please compare the correctness of responses A and B. Reply with \"leftvote\" if you find A better, \"rightvote\" if B is better, \"bothbad_vote\" if both responses are wrong, and \"tievote\" if both responses are equally satisfactory. If you are unable to make a decision, please reply with \"NA\".",
"pair_rate_wexplanation": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"[System]\nPlease act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this format: \"[[A]]\" if assistant A is better, \"[[B]]\" if assistant B is better, and \"[[C]]\" for a tie.",
"pair_rate": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"\n\n[System]\nPlease act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. Reply with \"leftvote\" if you find assistant A better, \"rightvote\" if assistant B is better, \"bothbad_vote\" if both responses are wrong, and \"tievote\" if both assistants provide equally satisfactory answers. If you are unable to make a decision, please reply with \"NA\"."
}
def inspect_convs(log_files):
ic(log_files)
data = []
total_vote = 0
correct_vote = 0
client = OpenAI()
with open('all_pairvote_log_wgpt_prtchatbot.csv', 'w', newline='') as csvfile:
# fieldnames = ['tstamp', 'type', 'model_1', 'model_2', 'template_name_1', 'template_name_2', 'system_message_1', 'system_message_2', 'role_1', 'role_2', 'instruction_1', 'instruction_2', 'message_1', 'message_2', 'offset_1', 'offset_2', 'conv_id_1', 'conv_id_2', 'model_name_1', 'model_name_2', 'ip']
fieldnames = ['tstamp', 'type', 'models', 'states', 'ip', 'gpt_vote']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
# Write the header
writer.writeheader()
for filename in tqdm(log_files, desc="read files"):
for retry in range(5):
try:
lines = open(filename).readlines()
break
except FileNotFoundError:
time.sleep(2)
for l in lines:
row = json.loads(l)
if "states" not in row:
continue
if row["type"] not in ["leftvote", "rightvote", "bothbad_vote", "tievote"]:
continue
model_names = row["states"][0]["model_name"], row["states"][1]["model_name"]
# Iterate through each state and write the relevant information
if not len(row["states"][0]['messages']): continue
# ic(row["states"][0]['messages'][1][1])
if row["states"][0]['messages'][1][1] is None or row["states"][1]['messages'][1][1] is None or "NETWORK ERROR" in row["states"][0]['messages'][1][1] or "NETWORK ERROR" in row["states"][1]['messages'][1][1]: continue
total_vote += 1
# row = {
# 'tstamp': row['tstamp'],
# 'type': row['type'],
# 'model_1': row['models'][0],
# 'model_2': row['models'][1],
# 'template_name_1': row["states"][0]['template_name'],
# 'system_message_1': row["states"][0]['system_message'],
# 'template_name_2': row["states"][1]['template_name'],
# 'system_message_2': row["states"][1]['system_message'],
# 'role_1': row["states"][0]['roles'],
# 'role_2': row["states"][1]['roles'],
# 'instruction_1': row["states"][0]['messages'][0][1],
# 'instruction_2': row["states"][1]['messages'][0][1],
# 'message_1': row["states"][0]['messages'][1][1],
# 'message_2': row["states"][1]['messages'][1][1],
# 'offset_1': row["states"][0]['offset'],
# 'offset_2': row["states"][1]['offset'],
# 'conv_id_1': row["states"][0]['conv_id'],
# 'conv_id_2': row["states"][1]['conv_id'],
# 'model_name_1': row["states"][0]['model_name'],
# 'model_name_2': row["states"][1]['model_name'],
# 'ip': row['ip']
# }
# writer.writerow(row)
# Convert complex objects to JSON strings
# TODO: check two image are the same
conv_id = row["states"][0]['conv_id']
image_path = os.path.join("/local/home/yujielu/project/Arena-Elo/vision-arena-logs", os.path.basename(filename)[:-5]+"input_images", f"input_image_{conv_id}.png")
if not os.path.exists(image_path):
response = "NA"
ic(image_path)
else:
base64_image = encode_image(image_path)
left_response = row["states"][0]['messages'][1][1]
right_response = row["states"][1]['messages'][1][1]
sep = "-" * 20
instruction = row["states"][0]['messages'][0][1]
generated_sentence = f"[The Start of Assistant A’s Answer]\n{left_response}\n[The End of Assistant A’s Answer]\n\n[The Start of Assistant B’s Answer]\n{right_response}\n[The End of Assistant B’s Answer]"
text_prompt = task_template_map["pair_rate"].format(instruction=instruction, generated_sentence=generated_sentence)
# ic(text_prompt)
try:
response = get_gpt4v_response(client, img_bs64=base64_image, text_prompt=text_prompt, use_vision=True)
except:
ic(">>> skip")
response = "NA"
# response = get_gpt4v_response(client, img_bs64=base64_image, text_prompt=text_prompt, use_vision=True)
ic(row['type'], response)
if response.strip() not in ["leftvote", "rightvote", "bothbad_vote", "tievote"]:
response = "NA"
# ic(generated_sentence)
# if row['type'] == "leftvote":
# row['type'] = "A"
# elif row['type'] == "rightvote":
# row['type'] = "B"
# elif row['type'] in ["bothbad_vote", "tievote"]:
# row['type'] = "C"
if row['type'] == response.strip():
correct_vote += 1
row['models'] = json.dumps(row['models'])
row['states'] = json.dumps(row['states'], ensure_ascii=False)
row['gpt_vote'] = response
# Write the modified row to the CSV file
writer.writerow(row)
# if row["type"] == "leftvote":
# winner, loser = model_names[0], model_names[1]
# winner_conv, loser_conv = row["states"][0], row["states"][1]
# elif row["type"] == "rightvote":
# loser, winner = model_names[0], model_names[1]
# loser_conv, winner_conv = row["states"][0], row["states"][1]
# if loser == "llava-v1.5-13b" and winner == "llava-v1.5-13b":
# print("=" * 20)
# print(f"Winner: {winner}")
# pretty_print_conversation(winner_conv["messages"])
# print(f"Loser: {loser}")
# pretty_print_conversation(loser_conv["messages"])
# print("=" * 20)
# input()
# if row['type'] == 'bothbad_vote':
# from icecream import ic
# ic(model_names)
# if row["type"] == "bothbad_vote" and "gpt-4-vision-preview" in model_names:
# print("=" * 20)
# print(f"Model A: {model_names[0]}")
# pretty_print_conversation(row["states"][0]["messages"])
# print(f"Model B: {model_names[1]}")
# pretty_print_conversation(row["states"][1]["messages"])
# print("=" * 20)
# input()
# if correct_vote >= 300: break
ic(total_vote, correct_vote)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--max-num-files", type=int)
args = parser.parse_args()
log_files = get_log_files(args.max_num_files)
inspect_convs(log_files)
|