import concurrent.futures import random import gradio as gr import requests import io, base64, json import spaces from PIL import Image from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, load_pipeline class ModelManager: def __init__(self): self.model_ig_list = IMAGE_GENERATION_MODELS self.model_ie_list = IMAGE_EDITION_MODELS self.model_vg_list = VIDEO_GENERATION_MODELS self.loaded_models = {} def load_model_pipe(self, model_name): if not model_name in self.loaded_models: pipe = load_pipeline(model_name) self.loaded_models[model_name] = pipe else: pipe = self.loaded_models[model_name] return pipe @spaces.GPU(duration=120) def generate_image_ig(self, prompt, model_name): pipe = self.load_model_pipe(model_name) result = pipe(prompt=prompt) return result def generate_image_ig_parallel_anony(self, prompt, model_A, model_B): if model_A == "" and model_B == "": model_names = random.sample([model for model in self.model_ig_list], 2) else: model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [executor.submit(self.generate_image_ig, prompt, model) for model in model_names] results = [future.result() for future in futures] return results[0], results[1], model_names[0], model_names[1] def generate_image_ig_parallel(self, prompt, model_A, model_B): model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [executor.submit(self.generate_image_ig, prompt, model) for model in model_names] results = [future.result() for future in futures] return results[0], results[1] @spaces.GPU(duration=150) def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name): pipe = self.load_model_pipe(model_name) result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct) return result def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [ executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names] results = [future.result() for future in futures] return results[0], results[1] def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): if model_A == "" and model_B == "": model_names = random.sample([model for model in self.model_ie_list], 2) else: model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names] results = [future.result() for future in futures] return results[0], results[1], model_names[0], model_names[1] @spaces.GPU(duration=200) def generate_video_vg(self, prompt, model_name): pipe = self.load_model_pipe(model_name) result = pipe(prompt=prompt) return result def generate_video_vg_parallel_anony(self, prompt, model_A, model_B): if model_A == "" and model_B == "": model_names = random.sample([model for model in self.model_vg_list], 2) else: model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [executor.submit(self.generate_video_vg, prompt, model) for model in model_names] results = [future.result() for future in futures] return results[0], results[1], model_names[0], model_names[1] def generate_video_vg_parallel(self, prompt, model_A, model_B): model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [executor.submit(self.generate_video_vg, prompt, model) for model in model_names] results = [future.result() for future in futures] return results[0], results[1]