File size: 4,271 Bytes
2560819
 
 
 
d0f1436
03ce29c
d0f1436
4e434e6
 
 
 
 
 
 
 
 
 
 
57908e7
4e434e6
 
 
 
 
 
 
25468b9
2560819
 
 
 
 
9fdd34c
2560819
 
 
03ce29c
 
2560819
 
 
 
 
 
 
03ce29c
2560819
 
 
 
 
 
 
 
 
 
03ce29c
2560819
 
1d8d33a
4e434e6
 
 
 
1d8d33a
f2951f1
1d8d33a
 
 
 
 
f2951f1
4e434e6
1d8d33a
 
03ce29c
 
2560819
 
03ce29c
a42898c
4e434e6
38e817c
a42898c
03ce29c
 
 
3c5ecfc
03ce29c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f076a2b
f2951f1
2560819
 
 
 
03ce29c
2560819
 
03ce29c
 
 
 
 
 
838a931
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer,
)

class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops = [], encounters=1):
        super().__init__()
        self.stops = [stop.to("cuda") for stop in stops]

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        last_token = input_ids[0][-1]
        for stop in self.stops:
            if tokenizer.decode(stop) == tokenizer.decode(last_token):
                return True
        return False

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

if torch.cuda.is_available():
    model_id = "TIGER-Lab/MAmmoTH2-7B-Plus"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.7,
    top_p: float = 1.0,
    repetition_penalty: float = 1.1,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    stop_words = ["</s>"]
    stop_words_ids = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for stop_word in stop_words]
    stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
    
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
        num_beams=1,
        stopping_criteria=stopping_criteria,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),  # Adjust width here
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.01,
            maximum=1.0,
            step=0.01,
            value=0.7,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.01,
            value=1.0,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.1,
        ),
    ],
    fill_height=False,
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()