Spaces:
Running
Running
import pandas as pd | |
import gradio as gr | |
import csv | |
import json | |
import os | |
import shutil | |
from huggingface_hub import Repository | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
SUBJECTS = ["Classification", "VQA", "Retrieval", "Grounding"] | |
MODEL_INFO = [ | |
"Models", "Model Size(B)", "Data Source", | |
"Overall", "IND", "OOD", | |
"Classification", "VQA", "Retrieval", "Grounding" | |
] | |
DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] | |
# TODO: submission process not implemented yet | |
SUBMISSION_NAME = "" | |
SUBMISSION_URL = "" | |
CSV_DIR = "results.csv" # TODO: Temporary file, to be updated with the actual file | |
COLUMN_NAMES = MODEL_INFO | |
LEADERBOARD_INTRODUCTION = """# MMEB Leaderboard | |
## Introduction | |
We introduce MMEB, a benchmark for multimodal evaluation of models. The benchmark consists of four tasks: Classification, VQA, Retrieval, and Grounding. Models are evaluated based on 36 datasets. | |
""" | |
TABLE_INTRODUCTION = """""" | |
LEADERBOARD_INFO = """ | |
## Dataset Summary | |
""" | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = """""" | |
SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction | |
## ⚠ Please note that you need to submit the JSON file with the following format: | |
```json | |
[ | |
{ | |
"question_id": 123, | |
"question": "abc", | |
"options": ["abc", "xyz", ...], | |
"answer": "ABC", | |
"answer_index": 1, | |
"category": "abc, | |
"pred": "B", | |
"model_outputs": "" | |
}, ... | |
] | |
``` | |
... | |
""" | |
def get_df(): | |
# TODO: Update this after the hf dataset has been created! | |
# repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN) | |
# repo.git_pull() | |
df = pd.read_csv(CSV_DIR) | |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size) | |
df = df.sort_values(by=['Overall'], ascending=False) | |
return df | |
def add_new_eval( | |
input_file, | |
): | |
if input_file is None: | |
return "Error! Empty file!" | |
upload_data = json.loads(input_file) | |
print("upload_data:\n", upload_data) | |
data_row = [f'{upload_data["Model"]}', upload_data['Overall']] | |
for subject in SUBJECTS: | |
data_row += [upload_data[subject]] | |
print("data_row:\n", data_row) | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, | |
use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
already_submitted = [] | |
with open(CSV_DIR, mode='r') as file: | |
reader = csv.reader(file, delimiter=',') | |
for row in reader: | |
already_submitted.append(row[0]) | |
if data_row[0] not in already_submitted: | |
with open(CSV_DIR, mode='a', newline='') as file: | |
writer = csv.writer(file) | |
writer.writerow(data_row) | |
submission_repo.push_to_hub() | |
print('Submission Successful') | |
else: | |
print('The entry already exists') | |
def refresh_data(): | |
df = get_df() | |
return df[COLUMN_NAMES] | |
def search_and_filter_models(df, query, min_size, max_size): | |
filtered_df = df.copy() | |
if query: | |
filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)] | |
size_mask = filtered_df['Model Size(B)'].apply(lambda x: | |
(min_size <= 1000.0 <= max_size) if x == 'unknown' | |
else (min_size <= x <= max_size)) | |
filtered_df = filtered_df[size_mask] | |
return filtered_df[COLUMN_NAMES] | |
# def search_and_filter_models(df, query, min_size, max_size): | |
# filtered_df = df.copy() | |
# if query: | |
# filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)] | |
# def size_filter(x): | |
# if isinstance(x, (int, float)): | |
# return min_size <= x <= max_size | |
# return True | |
# filtered_df = filtered_df[filtered_df['Model Size(B)'].apply(size_filter)] | |
# return filtered_df[COLUMN_NAMES] | |
def search_models(df, query): | |
if query: | |
return df[df['Models'].str.contains(query, case=False, na=False)] | |
return df | |
# def get_size_range(df): | |
# numeric_sizes = df[df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))]['Model Size(B)'] | |
# if len(numeric_sizes) > 0: | |
# return float(numeric_sizes.min()), float(numeric_sizes.max()) | |
# return 0, 1000 | |
def get_size_range(df): | |
sizes = df['Model Size(B)'].apply(lambda x: 1000.0 if x == 'unknown' else x) | |
return float(sizes.min()), float(sizes.max()) | |
def process_model_size(size): | |
if pd.isna(size) or size == 'unk': | |
return 'unknown' | |
try: | |
val = float(size) | |
return val | |
except (ValueError, TypeError): | |
return 'unknown' | |
def filter_columns_by_subjects(df, selected_subjects=None): | |
if selected_subjects is None or len(selected_subjects) == 0: | |
return df[COLUMN_NAMES] | |
base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall'] | |
selected_columns = base_columns + selected_subjects | |
available_columns = [col for col in selected_columns if col in df.columns] | |
return df[available_columns] | |
def get_subject_choices(): | |
return SUBJECTS | |