Spaces:
Running
Running
MINGYISU
commited on
Commit
·
2f72459
1
Parent(s):
13d06a1
Update model names
Browse files- app.py +3 -2
- results.csv +1 -1
- utils.py +22 -0
app.py
CHANGED
@@ -61,13 +61,14 @@ with gr.Blocks() as block:
|
|
61 |
elem_id="tasks-select"
|
62 |
)
|
63 |
|
|
|
64 |
data_component = gr.components.Dataframe(
|
65 |
-
value=df[COLUMN_NAMES],
|
66 |
headers=COLUMN_NAMES,
|
67 |
type="pandas",
|
68 |
datatype=DATA_TITLE_TYPE,
|
69 |
interactive=False,
|
70 |
-
visible=True
|
71 |
)
|
72 |
|
73 |
refresh_button = gr.Button("Refresh")
|
|
|
61 |
elem_id="tasks-select"
|
62 |
)
|
63 |
|
64 |
+
print(create_hyperlinked_names(df)[COLUMN_NAMES])
|
65 |
data_component = gr.components.Dataframe(
|
66 |
+
value=create_hyperlinked_names(df)[COLUMN_NAMES],
|
67 |
headers=COLUMN_NAMES,
|
68 |
type="pandas",
|
69 |
datatype=DATA_TITLE_TYPE,
|
70 |
interactive=False,
|
71 |
+
visible=True
|
72 |
)
|
73 |
|
74 |
refresh_button = gr.Button("Refresh")
|
results.csv
CHANGED
@@ -12,4 +12,4 @@ OpenCLIP-FFT,0.632,TIGER-Lab,47.2,50.5,43.1,56.0,21.9,55.4,64.1
|
|
12 |
VLM2Vec (Phi-3.5-V-FFT),4.15,TIGER-Lab,55.9,62.8,47.4,52.8,50.3,57.8,72.3
|
13 |
VLM2Vec (Phi-3.5-V-LoRA),4.15,TIGER-Lab,60.1,66.5,52.0,54.8,54.9,62.3,79.5
|
14 |
VLM2Vec (LLaVA-1.6-LoRA-LowRes),7.57,TIGER-Lab,55.0,61.0,47.5,54.7,50.3,56.2,64.0
|
15 |
-
VLM2Vec (LLaVA-1.6-LoRA-HighRes),7.57,TIGER-Lab,62.9,67.5,57.1,61.2,49.9,67.4,86.1
|
|
|
12 |
VLM2Vec (Phi-3.5-V-FFT),4.15,TIGER-Lab,55.9,62.8,47.4,52.8,50.3,57.8,72.3
|
13 |
VLM2Vec (Phi-3.5-V-LoRA),4.15,TIGER-Lab,60.1,66.5,52.0,54.8,54.9,62.3,79.5
|
14 |
VLM2Vec (LLaVA-1.6-LoRA-LowRes),7.57,TIGER-Lab,55.0,61.0,47.5,54.7,50.3,56.2,64.0
|
15 |
+
VLM2Vec (LLaVA-1.6-LoRA-HighRes),7.57,TIGER-Lab,62.9,67.5,57.1,61.2,49.9,67.4,86.1
|
utils.py
CHANGED
@@ -96,6 +96,27 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
96 |
Please send us an email at m7su@uwaterloo.ca, attaching the JSON file. We will review your submission and update the leaderboard accordingly.
|
97 |
"""
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def get_df():
|
100 |
# fetch the leaderboard data
|
101 |
url = "https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/results.csv"
|
@@ -105,6 +126,7 @@ def get_df():
|
|
105 |
sys.exit(f"Error: {response.status_code}")
|
106 |
df = pd.read_csv(io.StringIO(response.text))
|
107 |
df.to_csv(CSV_DIR, index=False) # update local file
|
|
|
108 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
109 |
df = df.sort_values(by=['Overall'], ascending=False)
|
110 |
return df
|
|
|
96 |
Please send us an email at m7su@uwaterloo.ca, attaching the JSON file. We will review your submission and update the leaderboard accordingly.
|
97 |
"""
|
98 |
|
99 |
+
MODEL_URLS = {
|
100 |
+
"clip-vit-large-patch14": "https://huggingface.co/openai/clip-vit-large-patch14",
|
101 |
+
"blip2-opt-2.7b": "https://huggingface.co/Salesforce/blip2-opt-2.7b",
|
102 |
+
"siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224",
|
103 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K": "https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
104 |
+
"e5-v": "https://huggingface.co/royokong/e5-v",
|
105 |
+
"MagicLens": "https://github.com/google-deepmind/magiclens",
|
106 |
+
|
107 |
+
}
|
108 |
+
|
109 |
+
def create_hyperlinked_names(df):
|
110 |
+
def add_link_to_model_name(model_name):
|
111 |
+
if model_name in MODEL_URLS:
|
112 |
+
return f"<a href='{MODEL_URLS[model_name]}'>{model_name}</a>"
|
113 |
+
else:
|
114 |
+
return model_name
|
115 |
+
|
116 |
+
df = df.copy()
|
117 |
+
df['Models'] = df['Models'].apply(add_link_to_model_name)
|
118 |
+
return df
|
119 |
+
|
120 |
def get_df():
|
121 |
# fetch the leaderboard data
|
122 |
url = "https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/results.csv"
|
|
|
126 |
sys.exit(f"Error: {response.status_code}")
|
127 |
df = pd.read_csv(io.StringIO(response.text))
|
128 |
df.to_csv(CSV_DIR, index=False) # update local file
|
129 |
+
df = pd.read_csv(CSV_DIR)
|
130 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
131 |
df = df.sort_values(by=['Overall'], ascending=False)
|
132 |
return df
|