|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
model_name = "huawei-noah/TinyBERT_General_6L_768D" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
st.title("TinyBERT Text Summarization") |
|
|
|
|
|
input_text = st.text_area("Enter text for summarization:", height=200) |
|
|
|
|
|
if st.button("Summarize"): |
|
if input_text: |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) |
|
|
|
|
|
outputs = model(**inputs) |
|
|
|
|
|
st.write(f"Model output: {outputs}") |
|
else: |
|
st.warning("Please enter some text to summarize.") |
|
|