|
import polars as pl |
|
import numpy as np |
|
|
|
def feature_engineering(df: pl.DataFrame) -> pl.DataFrame: |
|
|
|
df = df.with_columns( |
|
pl.col('game_date').str.slice(0, 4).alias('year') |
|
) |
|
|
|
df = df.with_columns([ |
|
|
|
(-(pl.col('vy0')**2 - (2 * pl.col('ay') * (pl.col('y0') - 17/12)))**0.5).alias('vy_f'), |
|
]) |
|
|
|
df = df.with_columns([ |
|
((pl.col('vy_f') - pl.col('vy0')) / pl.col('ay')).alias('t'), |
|
]) |
|
|
|
df = df.with_columns([ |
|
(pl.col('vz0') + (pl.col('az') * pl.col('t'))).alias('vz_f'), |
|
(pl.col('vx0') + (pl.col('ax') * pl.col('t'))).alias('vx_f') |
|
]) |
|
|
|
df = df.with_columns([ |
|
(-np.arctan(pl.col('vz_f') / pl.col('vy_f')) * (180 / np.pi)).alias('vaa'), |
|
(-np.arctan(pl.col('vx_f') / pl.col('vy_f')) * (180 / np.pi)).alias('haa') |
|
]) |
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('pitcher_hand') == 'L') |
|
.then(-pl.col('ax')) |
|
.otherwise(pl.col('ax')) |
|
.alias('ax') |
|
) |
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('pitcher_hand') == 'L') |
|
.then(-pl.col('hb')) |
|
.otherwise(pl.col('hb')) |
|
.alias('hb') |
|
) |
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('pitcher_hand') == 'L') |
|
.then(pl.col('x0')) |
|
.otherwise(-pl.col('x0')) |
|
.alias('x0') |
|
) |
|
|
|
|
|
pitch_types = ['SI', 'FF', 'FC'] |
|
|
|
|
|
df_filtered = df.filter(pl.col('pitch_type').is_in(pitch_types)) |
|
|
|
|
|
df_agg = df_filtered.group_by(['pitcher_id', 'year', 'pitch_type']).agg([ |
|
pl.col('start_speed').mean().alias('avg_fastball_speed'), |
|
pl.col('az').mean().alias('avg_fastball_az'), |
|
pl.col('ax').mean().alias('avg_fastball_ax'), |
|
pl.len().alias('count') |
|
]) |
|
|
|
|
|
df_agg = df_agg.sort(['count', 'avg_fastball_speed'], descending=[True, True]) |
|
df_agg = df_agg.unique(subset=['pitcher_id', 'year'], keep='first') |
|
|
|
|
|
df = df.join(df_agg, on=['pitcher_id', 'year']) |
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('avg_fastball_speed').is_null()) |
|
.then(pl.col('start_speed').max().over('pitcher_id')) |
|
.otherwise(pl.col('avg_fastball_speed')) |
|
.alias('avg_fastball_speed') |
|
) |
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('avg_fastball_az').is_null()) |
|
.then(pl.col('az').max().over('pitcher_id')) |
|
.otherwise(pl.col('avg_fastball_az')) |
|
.alias('avg_fastball_az') |
|
) |
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('avg_fastball_ax').is_null()) |
|
.then(pl.col('ax').max().over('ax')) |
|
.otherwise(pl.col('avg_fastball_ax')) |
|
.alias('avg_fastball_ax') |
|
) |
|
|
|
|
|
df = df.with_columns( |
|
(pl.col('start_speed') - pl.col('avg_fastball_speed')).alias('speed_diff'), |
|
(pl.col('az') - pl.col('avg_fastball_az')).alias('az_diff'), |
|
(pl.col('ax') - pl.col('avg_fastball_ax')).abs().alias('ax_diff') |
|
) |
|
|
|
|
|
df = df.with_columns( |
|
pl.col('year').cast(pl.Int64) |
|
) |
|
|
|
|
|
|
|
df = df.with_columns([ |
|
pl.lit('All').alias('all') |
|
]) |
|
|
|
|
|
df = df.with_columns([ |
|
(60.5 - df["extension"]).alias("release_pos_y") |
|
]) |
|
|
|
|
|
delta_t = (df["release_pos_y"] - df["y0"]) / df["vy0"] |
|
|
|
|
|
|
|
|
|
df = df.with_columns( |
|
pl.when(pl.col('pitcher_hand')== 'R') |
|
.then(df["x0"] - df["vx0"] * delta_t - 0.5 * df["ax"] * delta_t ** 2) |
|
.otherwise(df["x0"] + df["vx0"] * delta_t - 0.5 * df["ax"] * delta_t ** 2) |
|
.alias('release_pos_x') |
|
) |
|
|
|
df = df.with_columns([ |
|
(df["z0"] + df["vz0"] * delta_t + 0.5 * df["az"] * delta_t ** 2).alias("release_pos_z") |
|
]) |
|
|
|
|
|
|
|
return df |