nesticot's picture
Update app.py
aa747ac verified
raw
history blame
48.1 kB
import polars as pl
import api_scraper
mlb_scrape = api_scraper.MLB_Scrape()
from stuff_model import *
from shiny import App, reactive, ui, render
from shiny.ui import h2, tags
from api_scraper import MLB_Scrape
import datetime
from stuff_model import feature_engineering as fe
from stuff_model import stuff_apply
from pytabulator import TableOptions, Tabulator, output_tabulator, render_tabulator, theme
theme.tabulator_site()
scraper = MLB_Scrape()
df_year_old_group = pl.read_parquet('pitch_data_agg_2024.parquet')
pitcher_old_dict = dict(zip(df_year_old_group['pitcher_id'],df_year_old_group['pitcher_name']))
app_ui = ui.page_fluid(
ui.card(
ui.card_header("2025 Spring Training Pitch Data App"),
ui.row(
ui.column(4,
ui.markdown("""This app generates a table which shows the 2025 Spring Training data.
* Differences are calculated based on 2024 regular season data
* If 2024 data does not exist for pitcher, 2023 Data is used
* If no difference exists, the pitch is labelled as a new pitch"""),
ui.input_action_button(
"refresh",
"Refresh Data",
class_="btn-primary",
width="100%"
)
),
ui.column(3,
ui.div(
"By: ",
ui.tags.a(
"@TJStats",
href="https://x.com/TJStats",
target="_blank"
)
),
ui.tags.p("Data: MLB"),
ui.tags.p(
ui.tags.a(
"Support me on Patreon for more baseball content",
href="https://www.patreon.com/TJ_Stats",
target="_blank"
)
)
)
),
ui.navset_tab(
ui.nav("All Pitches",
ui.row(ui.column(1,ui.download_button("download_all", "Download Data", class_="btn-sm mb-3")),
ui.column(2,
ui.div(
{"class": "input-group"},
ui.span("Pitches >=", class_="input-label"),
ui.input_numeric(id='pitches_all_min', label='', value=1, min=1, width="100px")
)
)),
output_tabulator("table_all")
),
ui.nav("Daily Pitches",
ui.row(
ui.column(2,
ui.div(
{"class": "input-group"},
ui.span("Pitches >=", class_="input-label"),
ui.input_numeric(id='pitches_daily_min', label='', value=1, min=1, width="100px")
)
)),
output_tabulator("table_daily")
),
ui.nav("tjStuff+",
ui.row(
ui.column(2,
ui.div(
{"class": "input-group"},
ui.span("Pitches >=", class_="input-label"),
ui.input_numeric(id='pitches_tjstuff_min', label='', value=1, min=1, width="100px")
)
)),
output_tabulator("table_tjstuff")
),
ui.nav("tjStuff+ Summary",
ui.row(ui.column(1,ui.download_button("download_tjsumm", "Download Data", class_="btn-sm mb-3")),
ui.column(2,
ui.div(
{"class": "input-group"},
ui.span("Pitches >=", class_="input-label"),
ui.input_numeric(id='pitches_tjsumm_min', label='', value=1, min=1, width="100px")
)
)),
output_tabulator("table_stuff_all")
),
ui.nav("tjStuff+ Team",
ui.row(
ui.column(2,
)),
output_tabulator("table_tjstuff_team")
),
)
)
)
def server(input, output, session):
@reactive.Calc
def spring_data():
import polars as pl
df_spring = pl.read_parquet(f"hf://datasets/TJStatsApps/mlb_data/data/mlb_pitch_data_2025_spring.parquet")
date = (datetime.datetime.now() - datetime.timedelta(hours=8)).date()
print(datetime.datetime.now())
date_str = date.strftime('%Y-%m-%d')
# Initialize the scraper
game_list_input = (scraper.get_schedule(year_input=[int(date_str[0:4])], sport_id=[1], game_type=['S'])
.filter(pl.col('date') == date)['game_id'])
data = scraper.get_data(game_list_input)
df = scraper.get_data_df(data)
df_spring = pl.concat([df_spring, df]).sort('game_date', descending=True)
return df_spring.filter(pl.col('start_speed')>0)
@reactive.Calc
def ts_data():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
import polars as pl
# Compute total pitches for each pitcher
df_pitcher_totals = df_spring_stuff.group_by("pitcher_id").agg(
pl.col("start_speed").count().alias("pitcher_total")
)
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
pl.col('start_speed').count().alias('count'),
pl.col('start_speed').mean().alias('start_speed'),
pl.col('start_speed').max().alias('max_start_speed'),
pl.col('ivb').mean().alias('ivb'),
pl.col('hb').mean().alias('hb'),
pl.col('release_pos_z').mean().alias('release_pos_z'),
pl.col('release_pos_x').mean().alias('release_pos_x'),
pl.col('extension').mean().alias('extension'),
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
(pl.col('start_speed').filter(pl.col('batter_hand')=='L').count()).alias('rhh_count'),
(pl.col('start_speed').filter(pl.col('batter_hand')=='R').count()).alias('lhh_count')
])
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
df_spring_group = df_spring_group.join(df_pitcher_totals, on="pitcher_id", how="left")
# Now calculate the pitch percent for each pitcher/pitch_type combination
df_spring_group = df_spring_group.with_columns(
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
)
# Optionally, if you want the percentage of left/right-handed batters within the group:
df_spring_group = df_spring_group.with_columns([
(pl.col("rhh_count") / pl.col("pitcher_total")).alias("rhh_percent"),
(pl.col("lhh_count") / pl.col("pitcher_total")).alias("lhh_percent")
])
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitch_type'],how='left',suffix='_old')
df_merge = df_merge.with_columns(
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
)
df_merge = df_merge.with_columns(
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
.then(pl.lit(True))
.otherwise(pl.lit(None))
.alias("new_pitch")
)
df_merge = df_merge.select([
'pitcher_id',
'pitcher_name',
'pitch_type',
'count',
'pitch_percent',
'rhh_percent',
'lhh_percent',
'start_speed',
'max_start_speed',
'ivb',
'hb',
'release_pos_z',
'release_pos_x',
'extension',
'tj_stuff_plus',
])
return df_merge
@reactive.Calc
def ts_data():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
import polars as pl
# Compute total pitches for each pitcher
df_pitcher_totals = df_spring_stuff.group_by("pitcher_id").agg(
pl.col("start_speed").count().alias("pitcher_total")
)
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
pl.col('start_speed').count().alias('count'),
pl.col('start_speed').mean().alias('start_speed'),
pl.col('start_speed').max().alias('max_start_speed'),
pl.col('ivb').mean().alias('ivb'),
pl.col('hb').mean().alias('hb'),
pl.col('release_pos_z').mean().alias('release_pos_z'),
pl.col('release_pos_x').mean().alias('release_pos_x'),
pl.col('extension').mean().alias('extension'),
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
(pl.col('start_speed').filter(pl.col('batter_hand')=='L').count()).alias('rhh_count'),
(pl.col('start_speed').filter(pl.col('batter_hand')=='R').count()).alias('lhh_count')
])
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
df_spring_group = df_spring_group.join(df_pitcher_totals, on="pitcher_id", how="left")
# Now calculate the pitch percent for each pitcher/pitch_type combination
df_spring_group = df_spring_group.with_columns(
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
)
# Optionally, if you want the percentage of left/right-handed batters within the group:
df_spring_group = df_spring_group.with_columns([
(pl.col("rhh_count") / pl.col("pitcher_total")).alias("rhh_percent"),
(pl.col("lhh_count") / pl.col("pitcher_total")).alias("lhh_percent")
])
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitch_type'],how='left',suffix='_old')
df_merge = df_merge.with_columns(
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
)
df_merge = df_merge.with_columns(
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
.then(pl.lit(True))
.otherwise(pl.lit(None))
.alias("new_pitch")
)
df_merge = df_merge.select([
'pitcher_id',
'pitcher_name',
'pitch_type',
'count',
'pitch_percent',
'rhh_percent',
'lhh_percent',
'start_speed',
'max_start_speed',
'ivb',
'hb',
'release_pos_z',
'release_pos_x',
'extension',
'tj_stuff_plus',
])
return df_merge
@reactive.Calc
def ts_data_summ():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
# Aggregate tj_stuff_plus by pitcher_id and year
df_agg_2024_pitch = df_spring_stuff.group_by(['pitcher_id','pitcher_name', 'pitch_type']).agg(
pl.col('tj_stuff_plus').len().alias('count'),
pl.col('tj_stuff_plus').mean()
)
# Calculate the weighted average of 'tj_stuff_plus' for each pitcher
df_weighted_avg = df_agg_2024_pitch.with_columns(
(pl.col('tj_stuff_plus') * pl.col('count')).alias('weighted_tj_stuff_plus')
).group_by(['pitcher_id', 'pitcher_name']).agg(
pl.col('count').sum().alias('total_count'),
pl.col('weighted_tj_stuff_plus').sum().alias('total_weighted_tj_stuff_plus')
).with_columns(
(pl.col('total_weighted_tj_stuff_plus') / pl.col('total_count')).alias('tj_stuff_plus')
).select(['pitcher_id', 'pitcher_name', 'tj_stuff_plus', 'total_count'])
# Add the 'pitch_type' column with value "All"
df_weighted_avg = df_weighted_avg.with_columns(
pl.lit("All").alias('pitch_type')
)
# Select and rename columns to match the original DataFrame
df_weighted_avg = df_weighted_avg.select([
'pitcher_id',
'pitcher_name',
'pitch_type',
pl.col('total_count').alias('count'),
'tj_stuff_plus'
])
# Concatenate the new rows with the original DataFrame
df_small = pl.concat([df_agg_2024_pitch, df_weighted_avg])
df_game_count = df_spring_stuff.group_by(['pitcher_id']).agg(
(((pl.col('game_id').count())).alias('pitches')/((pl.col('game_id').n_unique()))).alias('pitches_per_game'),
)
count_dict = dict(zip(df_small.filter(pl.col('pitch_type')=='All')['pitcher_id'],
df_small.filter(pl.col('pitch_type')=='All')['count']))
# Check if 'FS' column exists, if not create it and fill with None
df_small_pivot = (df_small.pivot(index=['pitcher_id','pitcher_name'],
columns='pitch_type',
values='tj_stuff_plus').with_columns(
pl.col("pitcher_id").replace_strict(count_dict, default=None).alias("count")))
# Check if 'FS' column exists, if not create it and fill with None
for col in ['CH', 'CU', 'FC', 'FF', 'FS', 'SI', 'SL', 'ST', 'All']:
if col not in df_small_pivot.columns:
df_small_pivot = df_small_pivot.with_columns(pl.lit(None).alias(col))
df_small_pivot.select(['pitcher_id','pitcher_name','count','CH','CU','FC','FF','FS','SI','SL','ST','All']).sort('All',descending=True)#.head(10)#.write_clipboard()
return df_small_pivot
@session.download(filename="data.csv")
def download_all():
yield ts_data().write_csv()
@session.download(filename="data_tjstuff.csv")
def download_tjsumm():
yield ts_data_summ().write_csv()
@output
@render_tabulator
@reactive.event(input.refresh)
def table_all():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
import polars as pl
# Compute total pitches for each pitcher
df_pitcher_totals = df_spring_stuff.group_by(["pitcher_id"]).agg(
pl.col("start_speed").count().alias("pitcher_total")
)
df_pitcher_totals_hands = (
df_spring_stuff
.group_by(["pitcher_id", "batter_hand"])
.agg(pl.col("start_speed").count().alias("pitcher_total"))
.pivot(
values="pitcher_total",
index="pitcher_id",
columns="batter_hand",
aggregate_function="sum"
)
.rename({"L": "pitcher_total_left", "R": "pitcher_total_right"})
.fill_null(0) # Fill missing values with 0 if some pitchers don't face both hands
)
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
pl.col('start_speed').count().alias('count'),
pl.col('start_speed').mean().alias('start_speed'),
pl.col('start_speed').max().alias('max_start_speed'),
pl.col('ivb').mean().alias('ivb'),
pl.col('hb').mean().alias('hb'),
pl.col('release_pos_z').mean().alias('release_pos_z'),
pl.col('release_pos_x').mean().alias('release_pos_x'),
pl.col('extension').mean().alias('extension'),
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
(pl.col("batter_hand").eq("R").sum()).alias("rhh_count"), # Corrected: Counts RHH (batter_hand == "R")
(pl.col("batter_hand").eq("L").sum()).alias("lhh_count") # Corrected: Counts LHH (batter_hand == "L")
])
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
df_spring_group = df_spring_group.join(df_pitcher_totals, on=["pitcher_id"], how="left")
df_spring_group = df_spring_group.join(df_pitcher_totals_hands, on=["pitcher_id"], how="left")
# Now calculate the pitch percent for each pitcher/pitch_type combination
df_spring_group = df_spring_group.with_columns(
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
)
# Optionally, if you want the percentage of left/right-handed batters within the group:
df_spring_group = df_spring_group.with_columns([
(pl.col("rhh_count") / pl.col("pitcher_total_right")).alias("rhh_percent"),
(pl.col("lhh_count") / pl.col("pitcher_total_left")).alias("lhh_percent")
])
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitch_type'],how='left',suffix='_old')
df_merge = df_merge.with_columns(
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
)
df_merge = df_merge.with_columns(
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
.then(pl.lit(True))
.otherwise(pl.lit(None))
.alias("new_pitch")
)
import polars as pl
# Define the columns to subtract
cols_to_subtract = [
("start_speed", "start_speed_old"),
("max_start_speed", "max_start_speed_old"),
("ivb", "ivb_old"),
("hb", "hb_old"),
("release_pos_z", "release_pos_z_old"),
("release_pos_x", "release_pos_x_old"),
("extension", "extension_old"),
("tj_stuff_plus", "tj_stuff_plus_old")
]
df_merge = df_merge.with_columns([
# Step 1: Create _diff columns with the default value (e.g., 80) if old is null
pl.when(pl.col(old).is_null())
.then(pl.lit(10000)) # If old is null, assign 80 as the default
.otherwise(pl.col(new) - pl.col(old)) # Otherwise subtract old from new
.alias(new + "_diff")
for new, old in cols_to_subtract
])
# Step 2: Format the columns with (value (+diff)) - exclude brackets if diff is 80
df_merge = df_merge.with_columns([
pl.when(pl.col(new + "_diff").eq(10000)) # If diff is 80, no need to include brackets
.then(pl.col(new).round(1).cast(pl.Utf8)+'\n\t') # Just return the new value as string
.otherwise(
pl.col(new).round(1).cast(pl.Utf8) +
"\n(" +
pl.col(new + "_diff").round(1)
.map_elements(lambda x: f"{x:+.1f}") +
")"
).alias(new + "_formatted")
for new, _ in cols_to_subtract
])
percent_cols = ['pitch_percent', 'rhh_percent', 'lhh_percent']
df_merge = df_merge.with_columns([
(pl.col(col) * 100) # Convert to percentage
.round(1) # Round to 1 decimal
.map_elements(lambda x: f"{x:.1f}%") # Format as string with '%'
.alias(col + "_formatted")
for col in percent_cols
]).sort(['pitcher_id','count'],descending=True)
columns = [
{ "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
{ "title": "Team", "field": "pitcher_team", "width": 100, "headerFilter":"input" ,"frozen":True,},
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
{ "title": "New Pitch?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input","contextMenu":True},
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 100, "headerFilter":"input"},
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 100, "headerFilter":"input"},
{ "title": "Velocity", "field": "start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Max Velo", "field": "max_start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "iVB", "field": "ivb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "HB", "field": "hb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "RelH", "field": "release_pos_z_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "RelS", "field": "release_pos_x_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Extension", "field": "extension_formatted", "width": 125, "headerFilter":"input", "formatter":"textarea" },
{ "title": "tjStuff+", "field": "tj_stuff_plus_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" }
]
df_merge = df_merge.filter(pl.col('count')>=int(input.pitches_all_min()))
df_plot = df_merge.to_pandas()
team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
return Tabulator(
df_plot,
table_options=TableOptions(
height=750,
columns=columns,
)
)
@output
@render_tabulator
@reactive.event(input.refresh)
def table_daily():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
import polars as pl
# Compute total pitches for each pitcher
df_pitcher_totals = df_spring_stuff.group_by(["pitcher_id"]).agg(
pl.col("start_speed").count().alias("pitcher_total")
)
df_pitcher_totals_hands = (
df_spring_stuff
.group_by(["pitcher_id", "batter_hand"])
.agg(pl.col("start_speed").count().alias("pitcher_total"))
.pivot(
values="pitcher_total",
index="pitcher_id",
columns="batter_hand",
aggregate_function="sum"
)
.rename({"L": "pitcher_total_left", "R": "pitcher_total_right"})
.fill_null(0) # Fill missing values with 0 if some pitchers don't face both hands
)
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
pl.col('start_speed').count().alias('count'),
pl.col('start_speed').mean().alias('start_speed'),
pl.col('start_speed').max().alias('max_start_speed'),
pl.col('ivb').mean().alias('ivb'),
pl.col('hb').mean().alias('hb'),
pl.col('release_pos_z').mean().alias('release_pos_z'),
pl.col('release_pos_x').mean().alias('release_pos_x'),
pl.col('extension').mean().alias('extension'),
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
(pl.col("batter_hand").eq("R").sum()).alias("rhh_count"), # Corrected: Counts RHH (batter_hand == "R")
(pl.col("batter_hand").eq("L").sum()).alias("lhh_count") # Corrected: Counts LHH (batter_hand == "L")
])
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
df_spring_group = df_spring_group.join(df_pitcher_totals, on=["pitcher_id"], how="left")
df_spring_group = df_spring_group.join(df_pitcher_totals_hands, on=["pitcher_id"], how="left")
# Now calculate the pitch percent for each pitcher/pitch_type combination
df_spring_group = df_spring_group.with_columns(
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
)
# Optionally, if you want the percentage of left/right-handed batters within the group:
df_spring_group = df_spring_group.with_columns([
(pl.col("rhh_count") / pl.col("pitcher_total_right")).alias("rhh_percent"),
(pl.col("lhh_count") / pl.col("pitcher_total_left")).alias("lhh_percent")
])
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitch_type'],how='left',suffix='_old')
df_merge = df_merge.with_columns(
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
)
df_merge = df_merge.with_columns(
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
.then(pl.lit(True))
.otherwise(pl.lit(None))
.alias("new_pitch")
)
import polars as pl
# Define the columns to subtract
cols_to_subtract = [
("start_speed", "start_speed_old"),
("max_start_speed", "max_start_speed_old"),
("ivb", "ivb_old"),
("hb", "hb_old"),
("release_pos_z", "release_pos_z_old"),
("release_pos_x", "release_pos_x_old"),
("extension", "extension_old"),
("tj_stuff_plus", "tj_stuff_plus_old")
]
df_merge = df_merge.with_columns([
# Step 1: Create _diff columns with the default value (e.g., 80) if old is null
pl.when(pl.col(old).is_null())
.then(pl.lit(10000)) # If old is null, assign 80 as the default
.otherwise(pl.col(new) - pl.col(old)) # Otherwise subtract old from new
.alias(new + "_diff")
for new, old in cols_to_subtract
])
# Step 2: Format the columns with (value (+diff)) - exclude brackets if diff is 80
df_merge = df_merge.with_columns([
pl.when(pl.col(new + "_diff").eq(10000)) # If diff is 80, no need to include brackets
.then(pl.col(new).round(1).cast(pl.Utf8)+'\n\t') # Just return the new value as string
.otherwise(
pl.col(new).round(1).cast(pl.Utf8) +
"\n(" +
pl.col(new + "_diff").round(1)
.map_elements(lambda x: f"{x:+.1f}") +
")"
).alias(new + "_formatted")
for new, _ in cols_to_subtract
])
percent_cols = ['pitch_percent', 'rhh_percent', 'lhh_percent']
df_merge = df_merge.with_columns([
(pl.col(col) * 100) # Convert to percentage
.round(1) # Round to 1 decimal
.map_elements(lambda x: f"{x:.1f}%") # Format as string with '%'
.alias(col + "_formatted")
for col in percent_cols
]).sort(['pitcher_id','count'],descending=True)
columns = [
{ "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
{ "title": "Team", "field": "pitcher_team", "width": 100, "headerFilter":"input" ,"frozen":True,},
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
{ "title": "New Pitch?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
{ "title": "Date", "field": "game_date", "width": 100, "headerFilter":"input" ,"frozen":True,},
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input"},
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 100, "headerFilter":"input"},
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 100, "headerFilter":"input"},
{ "title": "Velocity", "field": "start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Max Velo", "field": "max_start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "iVB", "field": "ivb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "HB", "field": "hb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "RelH", "field": "release_pos_z_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "RelS", "field": "release_pos_x_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Extension", "field": "extension_formatted", "width": 125, "headerFilter":"input", "formatter":"textarea" },
{ "title": "tjStuff+", "field": "tj_stuff_plus_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" }
]
df_merge = df_merge.filter(pl.col('count')>=int(input.pitches_daily_min()))
df_plot = df_merge.to_pandas()
team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
return Tabulator(
df_plot,
table_options=TableOptions(
height=750,
columns=columns,
)
)
@output
@render_tabulator
@reactive.event(input.refresh)
def table_tjstuff():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
import polars as pl
# Compute total pitches for each pitcher
df_pitcher_totals = df_spring_stuff.group_by(["pitcher_id"]).agg(
pl.col("start_speed").count().alias("pitcher_total")
)
df_pitcher_totals_hands = (
df_spring_stuff
.group_by(["pitcher_id", "batter_hand"])
.agg(pl.col("start_speed").count().alias("pitcher_total"))
.pivot(
values="pitcher_total",
index="pitcher_id",
columns="batter_hand",
aggregate_function="sum"
)
.rename({"L": "pitcher_total_left", "R": "pitcher_total_right"})
.fill_null(0) # Fill missing values with 0 if some pitchers don't face both hands
)
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
pl.col('start_speed').count().alias('count'),
pl.col('start_speed').mean().alias('start_speed'),
pl.col('start_speed').max().alias('max_start_speed'),
pl.col('ivb').mean().alias('ivb'),
pl.col('hb').mean().alias('hb'),
pl.col('release_pos_z').mean().alias('release_pos_z'),
pl.col('release_pos_x').mean().alias('release_pos_x'),
pl.col('extension').mean().alias('extension'),
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
(pl.col("batter_hand").eq("R").sum()).alias("rhh_count"), # Corrected: Counts RHH (batter_hand == "R")
(pl.col("batter_hand").eq("L").sum()).alias("lhh_count") # Corrected: Counts LHH (batter_hand == "L")
])
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
df_spring_group = df_spring_group.join(df_pitcher_totals, on=["pitcher_id"], how="left")
df_spring_group = df_spring_group.join(df_pitcher_totals_hands, on=["pitcher_id"], how="left")
# Now calculate the pitch percent for each pitcher/pitch_type combination
df_spring_group = df_spring_group.with_columns(
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
)
# Optionally, if you want the percentage of left/right-handed batters within the group:
df_spring_group = df_spring_group.with_columns([
(pl.col("rhh_count") / pl.col("pitcher_total_right")).alias("rhh_percent"),
(pl.col("lhh_count") / pl.col("pitcher_total_left")).alias("lhh_percent")
])
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitch_type'],how='left',suffix='_old')
df_merge = df_merge.with_columns(
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
)
df_merge = df_merge.with_columns(
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
.then(pl.lit(True))
.otherwise(pl.lit(None))
.alias("new_pitch")
)
import polars as pl
# Define the columns to subtract
cols_to_subtract = [
("start_speed", "start_speed_old"),
("max_start_speed", "max_start_speed_old"),
("ivb", "ivb_old"),
("hb", "hb_old"),
("release_pos_z", "release_pos_z_old"),
("release_pos_x", "release_pos_x_old"),
("extension", "extension_old"),
("tj_stuff_plus", "tj_stuff_plus_old")
]
df_merge = df_merge.with_columns([
# Step 1: Create _diff columns with the default value (e.g., 80) if old is null
pl.when(pl.col(old).is_null())
.then(pl.lit(None)) # If old is null, assign 80 as the default
.otherwise(pl.col(new) - pl.col(old)) # Otherwise subtract old from new
.alias(new + "_diff")
for new, old in cols_to_subtract
])
# Step 2: Format the columns with (value (+diff)) - exclude brackets if diff is 80
# Step 2: Format the columns with (value (+diff)) - exclude brackets if diff is 80
df_merge = df_merge.with_columns([
pl.col(new).round(1).cast(pl.Utf8).alias(new + "_formatted")
for new, _ in cols_to_subtract
])
df_merge = df_merge.with_columns([
pl.col("tj_stuff_plus_old").round(1).cast(pl.Utf8).alias("tj_stuff_plus_old"),
pl.col("tj_stuff_plus_diff").round(1).map_elements(lambda x: f"{x:+.1f}").alias("tj_stuff_plus_diff")
])
percent_cols = ['pitch_percent', 'rhh_percent', 'lhh_percent']
df_merge = df_merge.with_columns([
(pl.col(col) * 100) # Convert to percentage
.round(1) # Round to 1 decimal
.map_elements(lambda x: f"{x:.1f}%") # Format as string with '%'
.alias(col + "_formatted")
for col in percent_cols
]).sort(['pitcher_id','count'],descending=True)
columns = [
{ "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
{ "title": "Team", "field": "pitcher_team", "width": 90, "headerFilter":"input" ,"frozen":True,},
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
{ "title": "New?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input"},
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},+
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 90, "headerFilter":"input"},
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 90, "headerFilter":"input"},
{ "title": "Velocity", "field": "start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Max Velo", "field": "max_start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "iVB", "field": "ivb_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
{ "title": "HB", "field": "hb_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
{ "title": "RelH", "field": "release_pos_z_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
{ "title": "RelS", "field": "release_pos_x_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Extension", "field": "extension_formatted", "width": 125, "headerFilter":"input", "formatter":"textarea" },
{ "title": "tjStuff+", "field": "tj_stuff_plus_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "2024 tjStuff+", "field": "tj_stuff_plus_old", "width": 100, "headerFilter":"input", "formatter":"textarea" },
{ "title": "Δ", "field": "tj_stuff_plus_diff", "width": 100, "headerFilter":"input", "formatter":"textarea" }
]
df_merge = df_merge.filter(pl.col('count')>=int(input.pitches_tjstuff_min()))
df_plot = df_merge.sort(['pitcher_id','count'],descending=True).to_pandas()
team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
return Tabulator(
df_plot,
table_options=TableOptions(
height=750,
columns=columns,
)
)
@output
@render_tabulator
@reactive.event(input.refresh)
def table_stuff_all():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
# Aggregate tj_stuff_plus by pitcher_id and year
df_agg_2024_pitch = df_spring_stuff.group_by(['pitcher_id','pitcher_name', 'pitch_type']).agg(
pl.col('tj_stuff_plus').len().alias('count'),
pl.col('tj_stuff_plus').mean()
)
# Calculate the weighted average of 'tj_stuff_plus' for each pitcher
df_weighted_avg = df_agg_2024_pitch.with_columns(
(pl.col('tj_stuff_plus') * pl.col('count')).alias('weighted_tj_stuff_plus')
).group_by(['pitcher_id', 'pitcher_name']).agg(
pl.col('count').sum().alias('total_count'),
pl.col('weighted_tj_stuff_plus').sum().alias('total_weighted_tj_stuff_plus')
).with_columns(
(pl.col('total_weighted_tj_stuff_plus') / pl.col('total_count')).alias('tj_stuff_plus')
).select(['pitcher_id', 'pitcher_name', 'tj_stuff_plus', 'total_count'])
# Add the 'pitch_type' column with value "All"
df_weighted_avg = df_weighted_avg.with_columns(
pl.lit("All").alias('pitch_type')
)
# Select and rename columns to match the original DataFrame
df_weighted_avg = df_weighted_avg.select([
'pitcher_id',
'pitcher_name',
'pitch_type',
pl.col('total_count').alias('count'),
'tj_stuff_plus'
])
# Concatenate the new rows with the original DataFrame
df_small = pl.concat([df_agg_2024_pitch, df_weighted_avg])
df_game_count = df_spring_stuff.group_by(['pitcher_id']).agg(
(((pl.col('game_id').count())).alias('pitches')/((pl.col('game_id').n_unique()))).alias('pitches_per_game'),
)
count_dict = dict(zip(df_small.filter(pl.col('pitch_type')=='All')['pitcher_id'],
df_small.filter(pl.col('pitch_type')=='All')['count']))
# Check if 'FS' column exists, if not create it and fill with None
df_small_pivot = (df_small.pivot(index=['pitcher_id','pitcher_name'],
columns='pitch_type',
values='tj_stuff_plus').with_columns(
pl.col("pitcher_id").replace_strict(count_dict, default=None).alias("count")))
# Check if 'FS' column exists, if not create it and fill with None
for col in ['CH', 'CU', 'FC', 'FF', 'FS', 'SI', 'SL', 'ST', 'All']:
if col not in df_small_pivot.columns:
df_small_pivot = df_small_pivot.with_columns(pl.lit(None).alias(col))
df_small_pivot.select(['pitcher_id','pitcher_name','count','CH','CU','FC','FF','FS','SI','SL','ST','All']).sort('All',descending=True)#.head(10)#.write_clipboard()
df_small_pivot = df_small_pivot.with_columns([
pl.col(col).round(0).alias(col) for col in ['CH', 'CU', 'FC', 'FF', 'FS', 'SI', 'SL', 'ST', 'All']
])
df_small_pivot = df_small_pivot.filter(pl.col('count')>=int(input.pitches_tjsumm_min()))
df_plot = df_small_pivot.sort(['pitcher_id','count'],descending=True).to_pandas()
team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
columns = [
{ "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
{ "title": "Team", "field": "pitcher_team", "width": 90, "headerFilter":"input" ,"frozen":True,},
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input"},
{ "title": "CH", "field": "CH", "width": 80, "formatter":"textarea" },
{ "title": "CU", "field": "CU", "width": 80, "formatter":"textarea" },
{ "title": "FC", "field": "FC", "width": 80, "formatter":"textarea" },
{ "title": "FF", "field": "FF", "width": 80, "formatter":"textarea" },
{ "title": "FS", "field": "FS", "width": 80, "formatter":"textarea" },
{ "title": "SI", "field": "SI", "width": 80, "formatter":"textarea" },
{ "title": "SL", "field": "SL", "width": 80, "formatter":"textarea" },
{ "title": "ST", "field": "ST", "width": 80, "formatter":"textarea" },
{ "title": "All", "field": "All", "width": 80, "formatter":"textarea" }
]
return Tabulator(
df_plot,
table_options=TableOptions(
height=750,
columns=columns,
),
)
@output
@render_tabulator
@reactive.event(input.refresh)
def table_tjstuff_team():
df_spring = spring_data()
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(df_spring))
import polars as pl
df_spring_group = df_spring_stuff.group_by(['pitcher_team']).agg([
pl.col('start_speed').count().alias('count'),
pl.col('start_speed').mean().alias('start_speed'),
pl.col('start_speed').max().alias('max_start_speed'),
pl.col('ivb').mean().alias('ivb'),
pl.col('hb').mean().alias('hb'),
pl.col('release_pos_z').mean().alias('release_pos_z'),
pl.col('release_pos_x').mean().alias('release_pos_x'),
pl.col('extension').mean().alias('extension'),
pl.col('tj_stuff_plus').mean().round(0).alias('tj_stuff_plus'),
(pl.col('start_speed').filter(pl.col('batter_hand')=='L').count()).alias('rhh_count'),
(pl.col('start_speed').filter(pl.col('batter_hand')=='R').count()).alias('lhh_count')
])
columns = [
# { "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
{ "title": "Team", "field": "pitcher_team", "width": 250, "headerFilter":"input" ,"frozen":True,},
# { "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
# { "title": "New?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
{ "title": "Pitches", "field": "count", "width": 250 , "headerFilter":"input"},
# { "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
# { "title": "RHH%", "field": "rhh_percent_formatted", "width": 90, "headerFilter":"input"},
# { "title": "LHH%", "field": "lhh_percent_formatted", "width": 90, "headerFilter":"input"},
# { "title": "Velocity", "field": "start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
# { "title": "Max Velo", "field": "max_start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
# { "title": "iVB", "field": "ivb_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
# { "title": "HB", "field": "hb_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
# { "title": "RelH", "field": "release_pos_z_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
# { "title": "RelS", "field": "release_pos_x_formatted", "width": 80, "headerFilter":"input", "formatter":"textarea" },
# { "title": "Extension", "field": "extension_formatted", "width": 125, "headerFilter":"input", "formatter":"textarea" },
{ "title": "tjStuff+", "field": "tj_stuff_plus", "width": 250, "headerFilter":"input", "formatter":"textarea" },
# { "title": "2024 tjStuff+", "field": "tj_stuff_plus_old", "width": 100, "headerFilter":"input", "formatter":"textarea" },
# { "title": "Δ", "field": "tj_stuff_plus_diff", "width": 100, "headerFilter":"input", "formatter":"textarea" }
]
df_merge = df_spring_group.clone()
df_plot = df_merge.sort(['pitcher_team','count'],descending=True).to_pandas()
# team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
# df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
return Tabulator(
df_plot,
table_options=TableOptions(
height=750,
columns=columns,
)
)
app = App(app_ui, server)