nesticot commited on
Commit
ec34806
·
verified ·
1 Parent(s): 03f81c9

Upload stuff_model/feature_engineering.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. stuff_model/feature_engineering.py +25 -21
stuff_model/feature_engineering.py CHANGED
@@ -7,6 +7,29 @@ def feature_engineering(df: pl.DataFrame) -> pl.DataFrame:
7
  pl.col('game_date').str.slice(0, 4).alias('year')
8
  )
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  df = df.with_columns([
11
 
12
  (-(pl.col('vy0')**2 - (2 * pl.col('ay') * (pl.col('y0') - 17/12)))**0.5).alias('vy_f'),
@@ -69,7 +92,7 @@ def feature_engineering(df: pl.DataFrame) -> pl.DataFrame:
69
  df_agg = df_agg.unique(subset=['pitcher_id', 'year'], keep='first')
70
 
71
  # Join the aggregated data with the main DataFrame
72
- df = df.join(df_agg, on=['pitcher_id', 'year'])
73
 
74
  # If no fastball, use the fastest pitch for avg_fastball_speed
75
  df = df.with_columns(
@@ -90,7 +113,7 @@ def feature_engineering(df: pl.DataFrame) -> pl.DataFrame:
90
  # If no fastball, use the fastest pitch for avg_fastball_ax
91
  df = df.with_columns(
92
  pl.when(pl.col('avg_fastball_ax').is_null())
93
- .then(pl.col('ax').max().over('ax'))
94
  .otherwise(pl.col('avg_fastball_ax'))
95
  .alias('avg_fastball_ax')
96
  )
@@ -113,27 +136,8 @@ def feature_engineering(df: pl.DataFrame) -> pl.DataFrame:
113
  pl.lit('All').alias('all')
114
  ])
115
 
116
- # Calculate mound_to_release as 60.5 - extension
117
- df = df.with_columns([
118
- (60.5 - df["extension"]).alias("release_pos_y")
119
- ])
120
-
121
- # Calculate delta time (Δt)
122
- delta_t = (df["release_pos_y"] - df["y0"]) / df["vy0"]
123
- # print((df["vx0"] * delta_t + 0.5 * df["ax"] * delta_t ** 2))
124
- # Corrected back-calculation of release_pos_x and release_pos_z
125
 
126
-
127
- df = df.with_columns(
128
- pl.when(pl.col('pitcher_hand')== 'R')
129
- .then(df["x0"] - df["vx0"] * delta_t - 0.5 * df["ax"] * delta_t ** 2)
130
- .otherwise(df["x0"] + df["vx0"] * delta_t - 0.5 * df["ax"] * delta_t ** 2)
131
- .alias('release_pos_x')
132
- )
133
 
134
- df = df.with_columns([
135
- (df["z0"] + df["vz0"] * delta_t + 0.5 * df["az"] * delta_t ** 2).alias("release_pos_z")
136
- ])
137
 
138
 
139
 
 
7
  pl.col('game_date').str.slice(0, 4).alias('year')
8
  )
9
 
10
+ # Calculate mound_to_release as 60.5 - extension
11
+ df = df.with_columns([
12
+ (60.5 - df["extension"]).alias("release_pos_y")
13
+ ])
14
+
15
+ # Calculate delta time (Δt)
16
+ delta_t = (df["release_pos_y"] - df["y0"]) / df["vy0"]
17
+ # print((df["vx0"] * delta_t + 0.5 * df["ax"] * delta_t ** 2))
18
+ # Corrected back-calculation of release_pos_x and release_pos_z
19
+
20
+
21
+ df = df.with_columns(
22
+ pl.when(pl.col('pitcher_hand')== 'R')
23
+ .then((df["x0"] + df["vx0"] * delta_t + 0.5 * df["ax"] * delta_t ** 2)*-1)
24
+ .otherwise(df["x0"] + df["vx0"] * delta_t + 0.5 * df["ax"] * delta_t ** 2)
25
+ .alias('release_pos_x')
26
+ )
27
+
28
+ df = df.with_columns([
29
+ (df["z0"] + df["vz0"] * delta_t + 0.5 * df["az"] * delta_t ** 2).alias("release_pos_z")
30
+ ])
31
+
32
+
33
  df = df.with_columns([
34
 
35
  (-(pl.col('vy0')**2 - (2 * pl.col('ay') * (pl.col('y0') - 17/12)))**0.5).alias('vy_f'),
 
92
  df_agg = df_agg.unique(subset=['pitcher_id', 'year'], keep='first')
93
 
94
  # Join the aggregated data with the main DataFrame
95
+ df = df.join(df_agg, on=['pitcher_id', 'year'],how='left')
96
 
97
  # If no fastball, use the fastest pitch for avg_fastball_speed
98
  df = df.with_columns(
 
113
  # If no fastball, use the fastest pitch for avg_fastball_ax
114
  df = df.with_columns(
115
  pl.when(pl.col('avg_fastball_ax').is_null())
116
+ .then(pl.col('ax').max().over('pitcher_id'))
117
  .otherwise(pl.col('avg_fastball_ax'))
118
  .alias('avg_fastball_ax')
119
  )
 
136
  pl.lit('All').alias('all')
137
  ])
138
 
 
 
 
 
 
 
 
 
 
139
 
 
 
 
 
 
 
 
140
 
 
 
 
141
 
142
 
143