Update app.py
Browse files
app.py
CHANGED
@@ -60,6 +60,7 @@ app_ui = ui.page_fluid(
|
|
60 |
),
|
61 |
ui.navset_tab(
|
62 |
ui.nav("All Pitches",
|
|
|
63 |
output_tabulator("table_all")
|
64 |
),
|
65 |
ui.nav("Daily Pitches",
|
@@ -77,6 +78,109 @@ app_ui = ui.page_fluid(
|
|
77 |
)
|
78 |
|
79 |
def server(input, output, session):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
@output
|
81 |
@render_tabulator
|
82 |
@reactive.event(input.refresh)
|
|
|
60 |
),
|
61 |
ui.navset_tab(
|
62 |
ui.nav("All Pitches",
|
63 |
+
ui.download_button("download_all", "Download Data", class_="btn-sm mb-3"),
|
64 |
output_tabulator("table_all")
|
65 |
),
|
66 |
ui.nav("Daily Pitches",
|
|
|
78 |
)
|
79 |
|
80 |
def server(input, output, session):
|
81 |
+
|
82 |
+
|
83 |
+
@reactive.Calc
|
84 |
+
def ts_data():
|
85 |
+
|
86 |
+
import polars as pl
|
87 |
+
df_spring = pl.read_parquet(f"hf://datasets/TJStatsApps/mlb_data/data/mlb_pitch_data_2025_spring.parquet")
|
88 |
+
|
89 |
+
|
90 |
+
date = (datetime.datetime.now() - datetime.timedelta(hours=8)).date()
|
91 |
+
print(datetime.datetime.now())
|
92 |
+
date_str = date.strftime('%Y-%m-%d')
|
93 |
+
# Initialize the scraper
|
94 |
+
|
95 |
+
|
96 |
+
game_list_input = (scraper.get_schedule(year_input=[int(date_str[0:4])], sport_id=[1], game_type=['S'])
|
97 |
+
.filter(pl.col('date') == date)['game_id'])
|
98 |
+
|
99 |
+
data = scraper.get_data(game_list_input)
|
100 |
+
df = scraper.get_data_df(data)
|
101 |
+
|
102 |
+
df_spring = pl.concat([df_spring, df]).sort('game_date', descending=True)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
|
107 |
+
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
|
108 |
+
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_spring])))
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
import polars as pl
|
113 |
+
|
114 |
+
# Compute total pitches for each pitcher
|
115 |
+
df_pitcher_totals = df_spring_stuff.group_by("pitcher_id").agg(
|
116 |
+
pl.col("start_speed").count().alias("pitcher_total")
|
117 |
+
)
|
118 |
+
|
119 |
+
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
|
120 |
+
pl.col('start_speed').count().alias('count'),
|
121 |
+
pl.col('start_speed').mean().alias('start_speed'),
|
122 |
+
pl.col('start_speed').max().alias('max_start_speed'),
|
123 |
+
pl.col('ivb').mean().alias('ivb'),
|
124 |
+
pl.col('hb').mean().alias('hb'),
|
125 |
+
pl.col('release_pos_z').mean().alias('release_pos_z'),
|
126 |
+
pl.col('release_pos_x').mean().alias('release_pos_x'),
|
127 |
+
pl.col('extension').mean().alias('extension'),
|
128 |
+
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
|
129 |
+
(pl.col('start_speed').filter(pl.col('batter_hand')=='L').count()).alias('rhh_count'),
|
130 |
+
(pl.col('start_speed').filter(pl.col('batter_hand')=='R').count()).alias('lhh_count')
|
131 |
+
])
|
132 |
+
|
133 |
+
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
|
134 |
+
df_spring_group = df_spring_group.join(df_pitcher_totals, on="pitcher_id", how="left")
|
135 |
+
|
136 |
+
# Now calculate the pitch percent for each pitcher/pitch_type combination
|
137 |
+
df_spring_group = df_spring_group.with_columns(
|
138 |
+
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
|
139 |
+
)
|
140 |
+
|
141 |
+
# Optionally, if you want the percentage of left/right-handed batters within the group:
|
142 |
+
df_spring_group = df_spring_group.with_columns([
|
143 |
+
(pl.col("rhh_count") / pl.col("pitcher_total")).alias("rhh_percent"),
|
144 |
+
(pl.col("lhh_count") / pl.col("pitcher_total")).alias("lhh_percent")
|
145 |
+
])
|
146 |
+
|
147 |
+
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitch_type'],how='left',suffix='_old')
|
148 |
+
|
149 |
+
|
150 |
+
df_merge = df_merge.with_columns(
|
151 |
+
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
|
152 |
+
)
|
153 |
+
|
154 |
+
df_merge = df_merge.with_columns(
|
155 |
+
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
|
156 |
+
.then(pl.lit(True))
|
157 |
+
.otherwise(pl.lit(None))
|
158 |
+
.alias("new_pitch")
|
159 |
+
)
|
160 |
+
|
161 |
+
df_merge = df_merge.select([
|
162 |
+
'pitcher_id',
|
163 |
+
'pitcher_name',
|
164 |
+
'pitch_type',
|
165 |
+
'count',
|
166 |
+
'pitch_percent',
|
167 |
+
'rhh_percent',
|
168 |
+
'lhh_percent',
|
169 |
+
'start_speed',
|
170 |
+
'max_start_speed',
|
171 |
+
'ivb',
|
172 |
+
'hb',
|
173 |
+
'release_pos_z',
|
174 |
+
'release_pos_x',
|
175 |
+
'extension',
|
176 |
+
'tj_stuff_plus',
|
177 |
+
])
|
178 |
+
|
179 |
+
return df_merge
|
180 |
+
|
181 |
+
@session.download(filename="data.csv")
|
182 |
+
def download_all():
|
183 |
+
yield ts_data().write_csv()
|
184 |
@output
|
185 |
@render_tabulator
|
186 |
@reactive.event(input.refresh)
|