Spaces:
Running
Running
"""Streamlit app for Presidio.""" | |
import os | |
from json import JSONEncoder | |
import pandas as pd | |
import streamlit as st | |
import streamlit.components.v1 as components | |
from annotated_text import annotated_text | |
from presidio_helpers import ( | |
get_supported_entities, | |
analyze, | |
anonymize, | |
annotate, | |
create_fake_data, | |
analyzer_engine, | |
) | |
components.html( | |
""" | |
<script type="text/javascript"> | |
(function(c,l,a,r,i,t,y){ | |
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)}; | |
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i; | |
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y); | |
})(window, document, "clarity", "script", "h7f8bp42n8"); | |
</script> | |
""" | |
) | |
st.set_page_config(page_title="Presidio demo", layout="wide") | |
# Sidebar | |
st.sidebar.header( | |
""" | |
PII De-Identification with Microsoft Presidio | |
""" | |
) | |
st.sidebar.info( | |
"Presidio is an open source customizable framework for PII detection and de-identification\n" | |
"[Code](https://aka.ms/presidio) | " | |
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | " | |
"[Installation](https://microsoft.github.io/presidio/installation/) | " | |
"[FAQ](https://microsoft.github.io/presidio/faq/)", | |
icon="ℹ️", | |
) | |
st.sidebar.markdown( | |
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa | |
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)" | |
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)" | |
) | |
st_model = st.sidebar.selectbox( | |
"NER model for PII detection", | |
[ | |
"StanfordAIMI/stanford-deidentifier-base", | |
"obi/deid_roberta_i2b2", | |
"flair/ner-english-large", | |
"en_core_web_lg", | |
], | |
index=1, | |
help=""" | |
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers. | |
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair. | |
""", | |
) | |
st.sidebar.markdown("> Note: Models might take some time to download. ") | |
st_operator = st.sidebar.selectbox( | |
"De-identification approach", | |
["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"], | |
index=1, | |
help=""" | |
Select which manipulation to the text is requested after PII has been identified.\n | |
- Redact: Completely remove the PII text\n | |
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n | |
- Synthesize: Replace with fake values (requires an OpenAI key)\n | |
- Highlight: Shows the original text with PII highlighted in colors\n | |
- Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n | |
- Hash: Replaces with the hash of the PII string\n | |
- Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed | |
""", | |
) | |
st_mask_char = "*" | |
st_number_of_chars = 15 | |
st_encrypt_key = "WmZq4t7w!z%C&F)J" | |
st_openai_key = "" | |
st_openai_model = "text-davinci-003" | |
if st_operator == "mask": | |
st_number_of_chars = st.sidebar.number_input( | |
"number of chars", value=st_number_of_chars, min_value=0, max_value=100 | |
) | |
st_mask_char = st.sidebar.text_input( | |
"Mask character", value=st_mask_char, max_chars=1 | |
) | |
elif st_operator == "encrypt": | |
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key) | |
elif st_operator == "synthesize": | |
st_openai_key = st.sidebar.text_input( | |
"OPENAI_KEY", | |
value=os.getenv("OPENAI_KEY", default=""), | |
help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.", | |
type="password", | |
) | |
st_openai_model = st.sidebar.text_input( | |
"OpenAI model for text synthesis", | |
value=st_openai_model, | |
help="See more here: https://platform.openai.com/docs/models/", | |
) | |
st_threshold = st.sidebar.slider( | |
label="Acceptance threshold", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.35, | |
help="Define the threshold for accepting a detection as PII.", | |
) | |
st_return_decision_process = st.sidebar.checkbox( | |
"Add analysis explanations to findings", | |
value=False, | |
help="Add the decision process to the output table. " | |
"More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/", | |
) | |
st_entities = st.sidebar.multiselect( | |
label="Which entities to look for?", | |
options=get_supported_entities(st_model), | |
default=list(get_supported_entities(st_model)), | |
help="Limit the list of PII entities detected. " | |
"This list is dynamic and based on the NER model and registered recognizers. " | |
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/", | |
) | |
# Main panel | |
analyzer_load_state = st.info("Starting Presidio analyzer...") | |
engine = analyzer_engine(model_path=st_model) | |
analyzer_load_state.empty() | |
# Read default text | |
with open("demo_text.txt") as f: | |
demo_text = f.readlines() | |
# Create two columns for before and after | |
col1, col2 = st.columns(2) | |
# Before: | |
col1.subheader("Input string:") | |
st_text = col1.text_area( | |
label="Enter text", | |
value="".join(demo_text), | |
height=400, | |
) | |
st_analyze_results = analyze( | |
st_model=st_model, | |
text=st_text, | |
entities=st_entities, | |
language="en", | |
score_threshold=st_threshold, | |
return_decision_process=st_return_decision_process, | |
) | |
# After | |
if st_operator not in ("highlight", "synthesize"): | |
with col2: | |
st.subheader(f"Output") | |
st_anonymize_results = anonymize( | |
text=st_text, | |
operator=st_operator, | |
mask_char=st_mask_char, | |
number_of_chars=st_number_of_chars, | |
encrypt_key=st_encrypt_key, | |
analyze_results=st_analyze_results, | |
) | |
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400) | |
elif st_operator == "synthesize": | |
with col2: | |
st.subheader(f"OpenAI Generated output") | |
fake_data = create_fake_data( | |
st_text, | |
st_analyze_results, | |
openai_key=st_openai_key, | |
openai_model_name=st_openai_model, | |
) | |
st.text_area(label="Synthetic data", value=fake_data, height=400) | |
else: | |
st.subheader("Highlighted") | |
annotated_tokens = annotate( | |
text=st_text, | |
analyze_results=st_analyze_results | |
) | |
# annotated_tokens | |
annotated_text(*annotated_tokens) | |
# json result | |
class ToDictEncoder(JSONEncoder): | |
"""Encode dict to json.""" | |
def default(self, o): | |
"""Encode to JSON using to_dict.""" | |
return o.to_dict() | |
# table result | |
st.subheader( | |
"Findings" if not st_return_decision_process else "Findings with decision factors" | |
) | |
if st_analyze_results: | |
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results]) | |
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results] | |
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename( | |
{ | |
"entity_type": "Entity type", | |
"text": "Text", | |
"start": "Start", | |
"end": "End", | |
"score": "Confidence", | |
}, | |
axis=1, | |
) | |
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results] | |
if st_return_decision_process: | |
analysis_explanation_df = pd.DataFrame.from_records( | |
[r.analysis_explanation.to_dict() for r in st_analyze_results] | |
) | |
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1) | |
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True) | |
else: | |
st.text("No findings") | |