presidio commited on
Commit
1215818
·
1 Parent(s): cf32ce5

Upload 7 files

Browse files
demo_text.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Here are a few examples sentences we currently support:
2
+
3
+ Hello, my name is David Johnson and I live in Maine.
4
+ My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
5
+
6
+ On September 18 I visited microsoft.com and sent an email to test@presidio.site, from the IP 192.168.0.1.
7
+
8
+ My passport: 191280342 and my phone number: (212) 555-1234.
9
+
10
+ This is a valid International Bank Account Number: IL150120690000003111111 . Can you please check the status on bank account 954567876544?
11
+
12
+ Kate's social security number is 078-05-1126. Her driver license? it is 1234567A.
index.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Simple demo website for Presidio
2
+ Here's a simple app, written in pure Python, to create a demo website for Presidio.
3
+ The app is based on the [streamlit](https://streamlit.io/) package.
4
+
5
+ ## Requirements
6
+ 1. Install dependencies (preferably in a virtual environment)
7
+
8
+ ```sh
9
+ pip install streamlit pandas presidio-analyzer presidio-anonymizer
10
+ ```
11
+
12
+ 2. Download the [presidio_streamlit.py](presidio_streamlit.py) file.
13
+ 3. *Optional*: Update the `analyzer_engine` and `anonymizer_engine` functions for your specific implementation
14
+ 3. Start the app:
15
+
16
+ ```sh
17
+ streamlit run presidio_streamlit.py
18
+ ```
19
+
20
+ ## Output
21
+ Output should be similar to this screenshot:
22
+ ![image](https://user-images.githubusercontent.com/3776619/120109161-efe21080-c170-11eb-8a29-9eaf71e722ee.png)
presidio_streamlit.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Streamlit app for Presidio."""
2
+
3
+ from json import JSONEncoder
4
+ from typing import List
5
+
6
+ import pandas as pd
7
+ import spacy
8
+ import streamlit as st
9
+ from annotated_text import annotated_text
10
+ from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
11
+ from presidio_analyzer.nlp_engine import NlpEngineProvider
12
+ from presidio_anonymizer import AnonymizerEngine
13
+ from presidio_anonymizer.entities import OperatorConfig
14
+
15
+ from transformers_rec import (
16
+ STANFORD_COFIGURATION,
17
+ TransformersRecognizer,
18
+ BERT_DEID_CONFIGURATION,
19
+ )
20
+
21
+
22
+ # Helper methods
23
+ @st.cache_resource
24
+ def analyzer_engine(model_path: str):
25
+ """Return AnalyzerEngine.
26
+
27
+ :param model_path: Which model to use for NER:
28
+ "StanfordAIMI/stanford-deidentifier-base",
29
+ "obi/deid_roberta_i2b2",
30
+ "en_core_web_lg"
31
+ """
32
+
33
+ registry = RecognizerRegistry()
34
+ registry.load_predefined_recognizers()
35
+
36
+ # Set up NLP Engine according to the model of choice
37
+ if model_path == "en_core_web_lg":
38
+ if not spacy.util.is_package("en_core_web_lg"):
39
+ spacy.cli.download("en_core_web_lg")
40
+ nlp_configuration = {
41
+ "nlp_engine_name": "spacy",
42
+ "models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
43
+ }
44
+ else:
45
+ if not spacy.util.is_package("en_core_web_sm"):
46
+ spacy.cli.download("en_core_web_sm")
47
+ # Using a small spaCy model + a HF NER model
48
+ transformers_recognizer = TransformersRecognizer(model_path=model_path)
49
+
50
+ if model_path == "StanfordAIMI/stanford-deidentifier-base":
51
+ transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
52
+ elif model_path == "obi/deid_roberta_i2b2":
53
+ transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
54
+
55
+ # Use small spaCy model, no need for both spacy and HF models
56
+ # The transformers model is used here as a recognizer, not as an NlpEngine
57
+ nlp_configuration = {
58
+ "nlp_engine_name": "spacy",
59
+ "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
60
+ }
61
+
62
+ registry.add_recognizer(transformers_recognizer)
63
+
64
+ nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
65
+
66
+ analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
67
+ return analyzer
68
+
69
+
70
+ @st.cache_resource
71
+ def anonymizer_engine():
72
+ """Return AnonymizerEngine."""
73
+ return AnonymizerEngine()
74
+
75
+
76
+ @st.cache_data
77
+ def get_supported_entities():
78
+ """Return supported entities from the Analyzer Engine."""
79
+ return analyzer_engine(st_model).get_supported_entities()
80
+
81
+
82
+ @st.cache_data
83
+ def analyze(**kwargs):
84
+ """Analyze input using Analyzer engine and input arguments (kwargs)."""
85
+ if "entities" not in kwargs or "All" in kwargs["entities"]:
86
+ kwargs["entities"] = None
87
+ return analyzer_engine(st_model).analyze(**kwargs)
88
+
89
+
90
+ def anonymize(text: str, analyze_results: List[RecognizerResult]):
91
+ """Anonymize identified input using Presidio Anonymizer.
92
+
93
+ :param text: Full text
94
+ :param analyze_results: list of results from presidio analyzer engine
95
+ """
96
+
97
+ if st_operator == "mask":
98
+ operator_config = {
99
+ "type": "mask",
100
+ "masking_char": st_mask_char,
101
+ "chars_to_mask": st_number_of_chars,
102
+ "from_end": False,
103
+ }
104
+
105
+ elif st_operator == "encrypt":
106
+ operator_config = {"key": st_encrypt_key}
107
+ elif st_operator == "highlight":
108
+ operator_config = {"lambda": lambda x: x}
109
+ else:
110
+ operator_config = None
111
+
112
+ if st_operator == "highlight":
113
+ operator = "custom"
114
+ else:
115
+ operator = st_operator
116
+
117
+ res = anonymizer_engine().anonymize(
118
+ text,
119
+ analyze_results,
120
+ operators={"DEFAULT": OperatorConfig(operator, operator_config)},
121
+ )
122
+ return res
123
+
124
+
125
+ def annotate(text: str, analyze_results: List[RecognizerResult]):
126
+ """
127
+ Highlights every identified entity on top of the text.
128
+ :param text: full text
129
+ :param analyze_results: list of analyzer results.
130
+ """
131
+ tokens = []
132
+
133
+ # Use the anonymizer to resolve overlaps
134
+ results = anonymize(text, analyze_results)
135
+
136
+ # sort by start index
137
+ results = sorted(results.items, key=lambda x: x.start)
138
+ for i, res in enumerate(results):
139
+ if i == 0:
140
+ tokens.append(text[: res.start])
141
+
142
+ # append entity text and entity type
143
+ tokens.append((text[res.start: res.end], res.entity_type))
144
+
145
+ # if another entity coming i.e. we're not at the last results element, add text up to next entity
146
+ if i != len(results) - 1:
147
+ tokens.append(text[res.end: results[i + 1].start])
148
+ # if no more entities coming, add all remaining text
149
+ else:
150
+ tokens.append(text[res.end:])
151
+ return tokens
152
+
153
+
154
+ st.set_page_config(page_title="Presidio demo", layout="wide")
155
+
156
+ # Sidebar
157
+ st.sidebar.header(
158
+ """
159
+ PII De-Identification with Microsoft Presidio
160
+ """
161
+ )
162
+
163
+ st.sidebar.info(
164
+ "Presidio is an open source customizable framework for PII detection and de-identification\n"
165
+ "[Code](https://aka.ms/presidio) | "
166
+ "[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
167
+ "[Installation](https://microsoft.github.io/presidio/installation/) | "
168
+ "[FAQ](https://microsoft.github.io/presidio/faq/)",
169
+ icon="ℹ️",
170
+ )
171
+
172
+ st.sidebar.markdown(
173
+ "[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
174
+ "[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
175
+ "![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
176
+ )
177
+
178
+ st_model = st.sidebar.selectbox(
179
+ "NER model",
180
+ [
181
+ "StanfordAIMI/stanford-deidentifier-base",
182
+ "obi/deid_roberta_i2b2",
183
+ "en_core_web_lg",
184
+ ],
185
+ index=1,
186
+ )
187
+ st.sidebar.markdown("> Note: Models might take some time to download. ")
188
+
189
+ st_operator = st.sidebar.selectbox(
190
+ "De-identification approach",
191
+ ["redact", "replace", "mask", "hash", "encrypt", "highlight"],
192
+ index=1,
193
+ )
194
+
195
+ if st_operator == "mask":
196
+ st_number_of_chars = st.sidebar.number_input(
197
+ "number of chars", value=15, min_value=0, max_value=100
198
+ )
199
+ st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
200
+ elif st_operator == "encrypt":
201
+ st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
202
+
203
+ st_threshold = st.sidebar.slider(
204
+ label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
205
+ )
206
+
207
+ st_return_decision_process = st.sidebar.checkbox(
208
+ "Add analysis explanations to findings", value=False
209
+ )
210
+
211
+ st_entities = st.sidebar.multiselect(
212
+ label="Which entities to look for?",
213
+ options=get_supported_entities(),
214
+ default=list(get_supported_entities()),
215
+ )
216
+
217
+ # Main panel
218
+ analyzer_load_state = st.info("Starting Presidio analyzer...")
219
+ engine = analyzer_engine(model_path=st_model)
220
+ analyzer_load_state.empty()
221
+
222
+ # Read default text
223
+ with open("demo_text.txt") as f:
224
+ demo_text = f.readlines()
225
+
226
+ # Create two columns for before and after
227
+ col1, col2 = st.columns(2)
228
+
229
+ # Before:
230
+ col1.subheader("Input string:")
231
+ st_text = col1.text_area(
232
+ label="Enter text",
233
+ value="".join(demo_text),
234
+ height=400,
235
+ )
236
+
237
+ st_analyze_results = analyze(
238
+ text=st_text,
239
+ entities=st_entities,
240
+ language="en",
241
+ score_threshold=st_threshold,
242
+ return_decision_process=st_return_decision_process,
243
+ )
244
+
245
+ # After
246
+ if st_operator != "highlight":
247
+ with col2:
248
+ st.subheader(f"Output")
249
+ st_anonymize_results = anonymize(st_text, st_analyze_results)
250
+ st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
251
+ else:
252
+ st.subheader("Highlighted")
253
+ annotated_tokens = annotate(st_text, st_analyze_results)
254
+ # annotated_tokens
255
+ annotated_text(*annotated_tokens)
256
+
257
+
258
+ # json result
259
+ class ToDictEncoder(JSONEncoder):
260
+ """Encode dict to json."""
261
+
262
+ def default(self, o):
263
+ """Encode to JSON using to_dict."""
264
+ return o.to_dict()
265
+
266
+
267
+ # table result
268
+ st.subheader(
269
+ "Findings" if not st_return_decision_process else "Findings with decision factors"
270
+ )
271
+ if st_analyze_results:
272
+ df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
273
+ df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
274
+
275
+ df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
276
+ {
277
+ "entity_type": "Entity type",
278
+ "text": "Text",
279
+ "start": "Start",
280
+ "end": "End",
281
+ "score": "Confidence",
282
+ },
283
+ axis=1,
284
+ )
285
+ df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
286
+ if st_return_decision_process:
287
+ analysis_explanation_df = pd.DataFrame.from_records(
288
+ [r.analysis_explanation.to_dict() for r in st_analyze_results]
289
+ )
290
+ df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
291
+ st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
292
+ else:
293
+ st.text("No findings")
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ presidio-analyzer
2
+ presidio-anonymizer
3
+ streamlit
4
+ pandas
5
+ st-annotated-text
6
+ faker
7
+ torch
8
+ transformers
transformers_rec/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .configuration import BERT_DEID_CONFIGURATION, STANFORD_COFIGURATION
2
+ from .transformers_recognizer import TransformersRecognizer
3
+
4
+ __all__ = ["BERT_DEID_CONFIGURATION", "STANFORD_COFIGURATION", "TransformersRecognizer"]
5
+
transformers_rec/configuration.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ STANFORD_COFIGURATION = {
2
+ "DEFAULT_MODEL_PATH": "StanfordAIMI/stanford-deidentifier-base",
3
+ "PRESIDIO_SUPPORTED_ENTITIES": [
4
+ "LOCATION",
5
+ "PERSON",
6
+ "ORGANIZATION",
7
+ "AGE",
8
+ "PHONE_NUMBER",
9
+ "EMAIL",
10
+ "DATE_TIME",
11
+ "DEVICE",
12
+ "ZIP",
13
+ "PROFESSION",
14
+ "USERNAME"
15
+
16
+ ],
17
+ "LABELS_TO_IGNORE": ["O"],
18
+ "DEFAULT_EXPLANATION": "Identified as {} by the StanfordAIMI/stanford-deidentifier-base NER model",
19
+ "SUB_WORD_AGGREGATION": "simple",
20
+ "DATASET_TO_PRESIDIO_MAPPING": {
21
+ "DATE": "DATE_TIME",
22
+ "DOCTOR": "PERSON",
23
+ "PATIENT": "PERSON",
24
+ "HOSPITAL": "LOCATION",
25
+ "MEDICALRECORD": "O",
26
+ "IDNUM": "O",
27
+ "ORGANIZATION": "ORGANIZATION",
28
+ "ZIP": "ZIP",
29
+ "PHONE": "PHONE_NUMBER",
30
+ "USERNAME": "USERNAME",
31
+ "STREET": "LOCATION",
32
+ "PROFESSION": "PROFESSION",
33
+ "COUNTRY": "LOCATION",
34
+ "LOCATION-OTHER": "LOCATION",
35
+ "FAX": "PHONE_NUMBER",
36
+ "EMAIL": "EMAIL",
37
+ "STATE": "LOCATION",
38
+ "DEVICE": "DEVICE",
39
+ "ORG": "ORGANIZATION",
40
+ "AGE": "AGE",
41
+ },
42
+ "MODEL_TO_PRESIDIO_MAPPING": {
43
+ "PER": "PERSON",
44
+ "PERSON": "PERSON",
45
+ "LOC": "LOCATION",
46
+ "ORG": "ORGANIZATION",
47
+ "AGE": "AGE",
48
+ "PATIENT": "PERSON",
49
+ "HCW": "PERSON",
50
+ "HOSPITAL": "LOCATION",
51
+ "PATORG": "ORGANIZATION",
52
+ "DATE": "DATE_TIME",
53
+ "PHONE": "PHONE_NUMBER",
54
+ "VENDOR": "ORGANIZATION",
55
+ },
56
+ "CHUNK_OVERLAP_SIZE": 40,
57
+ "CHUNK_SIZE": 600,
58
+ }
59
+
60
+
61
+ BERT_DEID_CONFIGURATION = {
62
+ "PRESIDIO_SUPPORTED_ENTITIES": [
63
+ "LOCATION",
64
+ "PERSON",
65
+ "ORGANIZATION",
66
+ "AGE",
67
+ "PHONE_NUMBER",
68
+ "EMAIL",
69
+ "DATE_TIME",
70
+ "ZIP",
71
+ "PROFESSION",
72
+ "USERNAME",
73
+ ],
74
+ "DEFAULT_MODEL_PATH": "obi/deid_roberta_i2b2",
75
+ "LABELS_TO_IGNORE": ["O"],
76
+ "DEFAULT_EXPLANATION": "Identified as {} by the obi/deid_roberta_i2b2 NER model",
77
+ "SUB_WORD_AGGREGATION": "simple",
78
+ "DATASET_TO_PRESIDIO_MAPPING": {
79
+ "DATE": "DATE_TIME",
80
+ "DOCTOR": "PERSON",
81
+ "PATIENT": "PERSON",
82
+ "HOSPITAL": "ORGANIZATION",
83
+ "MEDICALRECORD": "O",
84
+ "IDNUM": "O",
85
+ "ORGANIZATION": "ORGANIZATION",
86
+ "ZIP": "O",
87
+ "PHONE": "PHONE_NUMBER",
88
+ "USERNAME": "",
89
+ "STREET": "LOCATION",
90
+ "PROFESSION": "PROFESSION",
91
+ "COUNTRY": "LOCATION",
92
+ "LOCATION-OTHER": "LOCATION",
93
+ "FAX": "PHONE_NUMBER",
94
+ "EMAIL": "EMAIL",
95
+ "STATE": "LOCATION",
96
+ "DEVICE": "O",
97
+ "ORG": "ORGANIZATION",
98
+ "AGE": "AGE",
99
+ },
100
+ "MODEL_TO_PRESIDIO_MAPPING": {
101
+ "PER": "PERSON",
102
+ "LOC": "LOCATION",
103
+ "ORG": "ORGANIZATION",
104
+ "AGE": "AGE",
105
+ "ID": "O",
106
+ "EMAIL": "EMAIL",
107
+ "PATIENT": "PERSON",
108
+ "STAFF": "PERSON",
109
+ "HOSP": "ORGANIZATION",
110
+ "PATORG": "ORGANIZATION",
111
+ "DATE": "DATE_TIME",
112
+ "PHONE": "PHONE_NUMBER",
113
+ },
114
+ "CHUNK_OVERLAP_SIZE": 40,
115
+ "CHUNK_SIZE": 600,
116
+ }
transformers_rec/transformers_recognizer.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import logging
3
+ from typing import Optional, List
4
+
5
+ import torch
6
+ from presidio_analyzer import (
7
+ RecognizerResult,
8
+ EntityRecognizer,
9
+ AnalysisExplanation,
10
+ )
11
+ from presidio_analyzer.nlp_engine import NlpArtifacts
12
+
13
+ from .configuration import BERT_DEID_CONFIGURATION
14
+
15
+
16
+ logger = logging.getLogger("presidio-analyzer")
17
+
18
+ try:
19
+ from transformers import (
20
+ AutoTokenizer,
21
+ AutoModelForTokenClassification,
22
+ pipeline,
23
+ TokenClassificationPipeline,
24
+ )
25
+
26
+ except ImportError:
27
+ logger.error("transformers_rec is not installed")
28
+
29
+
30
+ class TransformersRecognizer(EntityRecognizer):
31
+ """
32
+ Wrapper for a transformers_rec model, if needed to be used within Presidio Analyzer.
33
+ The class loads models hosted on HuggingFace - https://huggingface.co/
34
+ and loads the model and tokenizer into a TokenClassification pipeline.
35
+ Samples are split into short text chunks, ideally shorter than max_length input_ids of the individual model,
36
+ to avoid truncation by the Tokenizer and loss of information
37
+
38
+ A configuration object should be maintained for each dataset-model combination and translate
39
+ entities names into a standardized view. A sample of a configuration file is attached in
40
+ the example.
41
+ :param supported_entities: List of entities to run inference on
42
+ :type supported_entities: Optional[List[str]]
43
+ :param pipeline: Instance of a TokenClassificationPipeline including a Tokenizer and a Model, defaults to None
44
+ :type pipeline: Optional[TokenClassificationPipeline], optional
45
+ :param model_path: string referencing a HuggingFace uploaded model to be used for Inference, defaults to None
46
+ :type model_path: Optional[str], optional
47
+
48
+ :example
49
+ >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
50
+ >model_path = "obi/deid_roberta_i2b2"
51
+ >transformers_recognizer = TransformersRecognizer(model_path=model_path,
52
+ >supported_entities = model_configuration.get("PRESIDIO_SUPPORTED_ENTITIES"))
53
+ >transformers_recognizer.load_transformer(**model_configuration)
54
+ >registry = RecognizerRegistry()
55
+ >registry.add_recognizer(transformers_recognizer)
56
+ >analyzer = AnalyzerEngine(registry=registry)
57
+ >sample = "My name is Christopher and I live in Irbid."
58
+ >results = analyzer.analyze(sample, language="en",return_decision_process=True)
59
+
60
+ >for result in results:
61
+ > print(result,'----', sample[result.start:result.end])
62
+ """
63
+
64
+ def load(self) -> None:
65
+ pass
66
+
67
+ def __init__(
68
+ self,
69
+ model_path: Optional[str] = None,
70
+ pipeline: Optional[TokenClassificationPipeline] = None,
71
+ supported_entities: Optional[List[str]] = None,
72
+ ):
73
+ if not supported_entities:
74
+ supported_entities = BERT_DEID_CONFIGURATION[
75
+ "PRESIDIO_SUPPORTED_ENTITIES"
76
+ ]
77
+ super().__init__(
78
+ supported_entities=supported_entities,
79
+ name=f"Transformers model {model_path}",
80
+ )
81
+
82
+ self.model_path = model_path
83
+ self.pipeline = pipeline
84
+ self.is_loaded = False
85
+
86
+ self.aggregation_mechanism = None
87
+ self.ignore_labels = None
88
+ self.model_to_presidio_mapping = None
89
+ self.entity_mapping = None
90
+ self.default_explanation = None
91
+ self.text_overlap_length = None
92
+ self.chunk_length = None
93
+
94
+ def load_transformer(self, **kwargs) -> None:
95
+ """Load external configuration parameters and set default values.
96
+
97
+ :param kwargs: define default values for class attributes and modify pipeline behavior
98
+ **DATASET_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from dataset format to Presidio format
99
+ **MODEL_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from chosen model format to Presidio format
100
+ **SUB_WORD_AGGREGATION(str) - define how to aggregate sub-word tokens into full words and spans as defined
101
+ in HuggingFace https://huggingface.co/transformers/v4.8.0/main_classes/pipelines.html#transformers.TokenClassificationPipeline # noqa
102
+ **CHUNK_OVERLAP_SIZE (int) - number of overlapping characters in each text chunk
103
+ when splitting a single text into multiple inferences
104
+ **CHUNK_SIZE (int) - number of characters in each chunk of text
105
+ **LABELS_TO_IGNORE (List(str)) - List of entities to skip evaluation. Defaults to ["O"]
106
+ **DEFAULT_EXPLANATION (str) - string format to use for prediction explanations
107
+ """
108
+
109
+ self.entity_mapping = kwargs.get("DATASET_TO_PRESIDIO_MAPPING", {})
110
+ self.model_to_presidio_mapping = kwargs.get("MODEL_TO_PRESIDIO_MAPPING", {})
111
+ self.ignore_labels = kwargs.get("LABELS_TO_IGNORE", ["O"])
112
+ self.aggregation_mechanism = kwargs.get("SUB_WORD_AGGREGATION", "simple")
113
+ self.default_explanation = kwargs.get("DEFAULT_EXPLANATION", None)
114
+ self.text_overlap_length = kwargs.get("CHUNK_OVERLAP_SIZE", 40)
115
+ self.chunk_length = kwargs.get("CHUNK_SIZE", 600)
116
+ if not self.pipeline:
117
+ if not self.model_path:
118
+ self.model_path = "obi/deid_roberta_i2b2"
119
+ logger.warning(
120
+ f"Both 'model' and 'model_path' arguments are None. Using default model_path={self.model_path}"
121
+ )
122
+
123
+ self._load_pipeline()
124
+
125
+ def _load_pipeline(self) -> None:
126
+ """Initialize NER transformers_rec pipeline using the model_path provided"""
127
+
128
+ logging.debug(f"Initializing NER pipeline using {self.model_path} path")
129
+ device = 0 if torch.cuda.is_available() else -1
130
+ self.pipeline = pipeline(
131
+ "ner",
132
+ model=AutoModelForTokenClassification.from_pretrained(self.model_path),
133
+ tokenizer=AutoTokenizer.from_pretrained(self.model_path),
134
+ # Will attempt to group sub-entities to word level
135
+ aggregation_strategy=self.aggregation_mechanism,
136
+ device=device,
137
+ framework="pt",
138
+ ignore_labels=self.ignore_labels,
139
+ )
140
+
141
+ self.is_loaded = True
142
+
143
+ def get_supported_entities(self) -> List[str]:
144
+ """
145
+ Return supported entities by this model.
146
+ :return: List of the supported entities.
147
+ """
148
+ return self.supported_entities
149
+
150
+ # Class to use transformers_rec with Presidio as an external recognizer.
151
+ def analyze(
152
+ self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
153
+ ) -> List[RecognizerResult]:
154
+ """
155
+ Analyze text using transformers_rec model to produce NER tagging.
156
+ :param text : The text for analysis.
157
+ :param entities: Not working properly for this recognizer.
158
+ :param nlp_artifacts: Not used by this recognizer.
159
+ :return: The list of Presidio RecognizerResult constructed from the recognized
160
+ transformers_rec detections.
161
+ """
162
+
163
+ results = list()
164
+ # Run transformer model on the provided text
165
+ ner_results = self._get_ner_results_for_text(text)
166
+
167
+ for res in ner_results:
168
+ entity = self.model_to_presidio_mapping.get(res["entity_group"], None)
169
+ if not entity:
170
+ continue
171
+
172
+ res["entity_group"] = self.__check_label_transformer(res["entity_group"])
173
+ textual_explanation = self.default_explanation.format(res["entity_group"])
174
+ explanation = self.build_transformers_explanation(
175
+ float(round(res["score"], 2)), textual_explanation, res["word"]
176
+ )
177
+ transformers_result = self._convert_to_recognizer_result(res, explanation)
178
+
179
+ results.append(transformers_result)
180
+
181
+ return results
182
+
183
+ @staticmethod
184
+ def split_text_to_word_chunks(
185
+ input_length: int, chunk_length: int, overlap_length: int
186
+ ) -> List[List]:
187
+ """The function calculates chunks of text with size chunk_length. Each chunk has overlap_length number of
188
+ words to create context and continuity for the model
189
+
190
+ :param input_length: Length of input_ids for a given text
191
+ :type input_length: int
192
+ :param chunk_length: Length of each chunk of input_ids.
193
+ Should match the max input length of the transformer model
194
+ :type chunk_length: int
195
+ :param overlap_length: Number of overlapping words in each chunk
196
+ :type overlap_length: int
197
+ :return: List of start and end positions for individual text chunks
198
+ :rtype: List[List]
199
+ """
200
+ if input_length < chunk_length:
201
+ return [[0, input_length]]
202
+ if chunk_length <= overlap_length:
203
+ logger.warning(
204
+ "overlap_length should be shorter than chunk_length, setting overlap_length to by half of chunk_length"
205
+ )
206
+ overlap_length = chunk_length // 2
207
+ return [
208
+ [i, min([i + chunk_length, input_length])]
209
+ for i in range(
210
+ 0, input_length - overlap_length, chunk_length - overlap_length
211
+ )
212
+ ]
213
+
214
+ def _get_ner_results_for_text(self, text: str) -> List[dict]:
215
+ """The function runs model inference on the provided text.
216
+ The text is split into chunks with n overlapping characters.
217
+ The results are then aggregated and duplications are removed.
218
+
219
+ :param text: The text to run inference on
220
+ :type text: str
221
+ :return: List of entity predictions on the word level
222
+ :rtype: List[dict]
223
+ """
224
+ model_max_length = self.pipeline.tokenizer.model_max_length
225
+ # calculate inputs based on the text
226
+ text_length = len(text)
227
+ # split text into chunks
228
+ logger.info(
229
+ f"splitting the text into chunks, length {text_length} > {model_max_length*2}"
230
+ )
231
+ predictions = list()
232
+ chunk_indexes = TransformersRecognizer.split_text_to_word_chunks(
233
+ text_length, self.chunk_length, self.text_overlap_length
234
+ )
235
+
236
+ # iterate over text chunks and run inference
237
+ for chunk_start, chunk_end in chunk_indexes:
238
+ chunk_text = text[chunk_start:chunk_end]
239
+ chunk_preds = self.pipeline(chunk_text)
240
+
241
+ # align indexes to match the original text - add to each position the value of chunk_start
242
+ aligned_predictions = list()
243
+ for prediction in chunk_preds:
244
+ prediction_tmp = copy.deepcopy(prediction)
245
+ prediction_tmp["start"] += chunk_start
246
+ prediction_tmp["end"] += chunk_start
247
+ aligned_predictions.append(prediction_tmp)
248
+
249
+ predictions.extend(aligned_predictions)
250
+
251
+ # remove duplicates
252
+ predictions = [dict(t) for t in {tuple(d.items()) for d in predictions}]
253
+ return predictions
254
+
255
+ @staticmethod
256
+ def _convert_to_recognizer_result(
257
+ prediction_result: dict, explanation: AnalysisExplanation
258
+ ) -> RecognizerResult:
259
+ """The method parses NER model predictions into a RecognizerResult format to enable down the stream analysis
260
+
261
+ :param prediction_result: A single example of entity prediction
262
+ :type prediction_result: dict
263
+ :param explanation: Textual representation of model prediction
264
+ :type explanation: str
265
+ :return: An instance of RecognizerResult which is used to model evaluation calculations
266
+ :rtype: RecognizerResult
267
+ """
268
+
269
+ transformers_results = RecognizerResult(
270
+ entity_type=prediction_result["entity_group"],
271
+ start=prediction_result["start"],
272
+ end=prediction_result["end"],
273
+ score=float(round(prediction_result["score"], 2)),
274
+ analysis_explanation=explanation,
275
+ )
276
+
277
+ return transformers_results
278
+
279
+ def build_transformers_explanation(
280
+ self,
281
+ original_score: float,
282
+ explanation: str,
283
+ pattern: str,
284
+ ) -> AnalysisExplanation:
285
+ """
286
+ Create explanation for why this result was detected.
287
+ :param original_score: Score given by this recognizer
288
+ :param explanation: Explanation string
289
+ :param pattern: Regex pattern used
290
+ :return Structured explanation and scores of a NER model prediction
291
+ :rtype: AnalysisExplanation
292
+ """
293
+ explanation = AnalysisExplanation(
294
+ recognizer=self.__class__.__name__,
295
+ original_score=float(original_score),
296
+ textual_explanation=explanation,
297
+ pattern=pattern,
298
+ )
299
+ return explanation
300
+
301
+ def __check_label_transformer(self, label: str) -> str:
302
+ """The function validates the predicted label is identified by Presidio
303
+ and maps the string into a Presidio representation
304
+ :param label: Predicted label by the model
305
+ :type label: str
306
+ :return: Returns the predicted entity if the label is found in model_to_presidio mapping dictionary
307
+ and is supported by Presidio entities
308
+ :rtype: str
309
+ """
310
+
311
+ if label == "O":
312
+ return label
313
+
314
+ # convert model label to presidio label
315
+ entity = self.model_to_presidio_mapping.get(label, None)
316
+
317
+ if entity is None:
318
+ logger.warning(f"Found unrecognized label {label}, returning entity as 'O'")
319
+ return "O"
320
+
321
+ if entity not in self.supported_entities:
322
+ logger.warning(f"Found entity {entity} which is not supported by Presidio")
323
+ return "O"
324
+ return entity