|
|
|
|
|
import sys, os |
|
import logging |
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
logging.getLogger("markdown_it").setLevel(logging.WARNING) |
|
logging.getLogger("urllib3").setLevel(logging.WARNING) |
|
logging.getLogger("matplotlib").setLevel(logging.WARNING) |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import torch |
|
import argparse |
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import cleaned_text_to_sequence, get_bert |
|
from text.cleaner import clean_text |
|
import gradio as gr |
|
import webbrowser |
|
import numpy as np |
|
|
|
net_g = None |
|
|
|
if sys.platform == "darwin" and torch.backends.mps.is_available(): |
|
device = "mps" |
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
|
else: |
|
device = "cuda" |
|
|
|
|
|
def get_text(text, language_str, hps): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert(norm_text, word2ph, language_str, device) |
|
del word2ph |
|
assert bert.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert |
|
ja_bert = torch.zeros(768, len(phone)) |
|
elif language_str == "JP": |
|
ja_bert = bert |
|
bert = torch.zeros(1024, len(phone)) |
|
else: |
|
bert = torch.zeros(1024, len(phone)) |
|
ja_bert = torch.zeros(768, len(phone)) |
|
|
|
assert bert.shape[-1] == len( |
|
phone |
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, phone, tone, language |
|
|
|
|
|
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language): |
|
global net_g |
|
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps) |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers |
|
torch.cuda.empty_cache() |
|
return audio |
|
|
|
|
|
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language): |
|
|
|
if len(text) >100: |
|
return "Text too long",None |
|
|
|
slices = text.split("|") |
|
audio_list = [] |
|
with torch.no_grad(): |
|
for slice in slices: |
|
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language) |
|
audio_list.append(audio) |
|
silence = np.zeros(hps.data.sampling_rate) |
|
audio_list.append(silence) |
|
audio_concat = np.concatenate(audio_list) |
|
return "Success", (hps.data.sampling_rate, audio_concat) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-m", "--model", default="./logs/UGH/G_100000.pth", help="path of your model" |
|
) |
|
parser.add_argument( |
|
"-c", |
|
"--config", |
|
default="./configs/config.json", |
|
help="path of your config file", |
|
) |
|
parser.add_argument( |
|
"--share", default=False, help="make link public", action="store_true" |
|
) |
|
parser.add_argument( |
|
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log" |
|
) |
|
|
|
args = parser.parse_args() |
|
if args.debug: |
|
logger.info("Enable DEBUG-LEVEL log") |
|
logging.basicConfig(level=logging.DEBUG) |
|
hps = utils.get_hparams_from_file(args.config) |
|
|
|
device = ( |
|
"cuda:0" |
|
if torch.cuda.is_available() |
|
else ( |
|
"mps" |
|
if sys.platform == "darwin" and torch.backends.mps.is_available() |
|
else "cpu" |
|
) |
|
) |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True) |
|
|
|
speaker_ids = hps.data.spk2id |
|
speakers = list(speaker_ids.keys()) |
|
languages = ["ZH", "JP"] |
|
with gr.Blocks() as app: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(value=""" |
|
严禁用于任何商业和政治相关用途。作者不对你使用本模型所带来的一切后果负责~\n |
|
基于[Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)训练微调\n |
|
(重新洗了一遍数据集重练中) |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.TextArea( |
|
label="Text", |
|
placeholder="Input Text Here", |
|
value="吃葡萄不吐葡萄皮,不吃葡萄倒吐葡萄皮。", |
|
) |
|
speaker = gr.Dropdown( |
|
choices=speakers, value=speakers[0], label="Speaker" |
|
) |
|
sdp_ratio = gr.Slider( |
|
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio" |
|
) |
|
noise_scale = gr.Slider( |
|
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale" |
|
) |
|
noise_scale_w = gr.Slider( |
|
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W" |
|
) |
|
length_scale = gr.Slider( |
|
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale" |
|
) |
|
language = gr.Dropdown( |
|
choices=languages, value=languages[0], label="Language" |
|
) |
|
btn = gr.Button("Generate!", variant="primary") |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Message") |
|
audio_output = gr.Audio(label="Output Audio") |
|
|
|
btn.click( |
|
tts_fn, |
|
inputs=[ |
|
text, |
|
speaker, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
language, |
|
], |
|
outputs=[text_output, audio_output], |
|
) |
|
|
|
webbrowser.open("http://127.0.0.1:7860") |
|
app.launch(share=args.share) |
|
|