Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import time | |
import pdb | |
import gradio as gr | |
import spaces | |
import numpy as np | |
import sys | |
import subprocess | |
from huggingface_hub import snapshot_download | |
import argparse | |
import os | |
from omegaconf import OmegaConf | |
import numpy as np | |
import cv2 | |
import torch | |
import glob | |
import pickle | |
from tqdm import tqdm | |
import copy | |
from argparse import Namespace | |
from musetalk.utils.utils import get_file_type,get_video_fps,datagen | |
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder | |
from musetalk.utils.blending import get_image | |
from musetalk.utils.utils import load_all_model | |
import shutil | |
ProjectDir = os.path.abspath(os.path.dirname(__file__)) | |
CheckpointsDir = os.path.join(ProjectDir, "checkpoints") | |
def download_model(): | |
if not os.path.exists(CheckpointsDir): | |
os.makedirs(CheckpointsDir) | |
print("Checkpoint Not Downloaded, start downloading...") | |
tic = time.time() | |
snapshot_download( | |
repo_id="TMElyralab/MuseTalk", | |
local_dir=CheckpointsDir, | |
max_workers=8, | |
local_dir_use_symlinks=True, | |
) | |
toc = time.time() | |
print(f"download cost {toc-tic} seconds") | |
else: | |
print("Already download the model.") | |
def inference(audio_path,video_path,bbox_shift,progress=gr.Progress(track_tqdm=True)): | |
args_dict={"result_dir":'./results', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script | |
args = Namespace(**args_dict) | |
input_basename = os.path.basename(video_path).split('.')[0] | |
audio_basename = os.path.basename(audio_path).split('.')[0] | |
output_basename = f"{input_basename}_{audio_basename}" | |
result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs | |
crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input | |
os.makedirs(result_img_save_path,exist_ok =True) | |
if args.output_vid_name=="": | |
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") | |
else: | |
output_vid_name = os.path.join(args.result_dir, args.output_vid_name) | |
############################################## extract frames from source video ############################################## | |
if get_file_type(video_path)=="video": | |
save_dir_full = os.path.join(args.result_dir, input_basename) | |
os.makedirs(save_dir_full,exist_ok = True) | |
cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" | |
os.system(cmd) | |
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) | |
fps = get_video_fps(video_path) | |
else: # input img folder | |
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) | |
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
fps = args.fps | |
#print(input_img_list) | |
############################################## extract audio feature ############################################## | |
whisper_feature = audio_processor.audio2feat(audio_path) | |
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) | |
############################################## preprocess input image ############################################## | |
if os.path.exists(crop_coord_save_path) and args.use_saved_coord: | |
print("using extracted coordinates") | |
with open(crop_coord_save_path,'rb') as f: | |
coord_list = pickle.load(f) | |
frame_list = read_imgs(input_img_list) | |
else: | |
print("extracting landmarks...time consuming") | |
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) | |
with open(crop_coord_save_path, 'wb') as f: | |
pickle.dump(coord_list, f) | |
i = 0 | |
input_latent_list = [] | |
for bbox, frame in zip(coord_list, frame_list): | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
latents = vae.get_latents_for_unet(crop_frame) | |
input_latent_list.append(latents) | |
# to smooth the first and the last frame | |
frame_list_cycle = frame_list + frame_list[::-1] | |
coord_list_cycle = coord_list + coord_list[::-1] | |
input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
############################################## inference batch by batch ############################################## | |
print("start inference") | |
video_num = len(whisper_chunks) | |
batch_size = args.batch_size | |
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) | |
res_frame_list = [] | |
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): | |
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] | |
audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384 | |
audio_feature_batch = pe(audio_feature_batch) | |
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample | |
recon = vae.decode_latents(pred_latents) | |
for res_frame in recon: | |
res_frame_list.append(res_frame) | |
############################################## pad to full image ############################################## | |
print("pad talking image to original video") | |
for i, res_frame in enumerate(tqdm(res_frame_list)): | |
bbox = coord_list_cycle[i%(len(coord_list_cycle))] | |
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) | |
x1, y1, x2, y2 = bbox | |
try: | |
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
except: | |
# print(bbox) | |
continue | |
combine_frame = get_image(ori_frame,res_frame,bbox) | |
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) | |
cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 temp.mp4" | |
print(cmd_img2video) | |
os.system(cmd_img2video) | |
cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}" | |
print(cmd_combine_audio) | |
os.system(cmd_combine_audio) | |
os.remove("temp.mp4") | |
shutil.rmtree(result_img_save_path) | |
print(f"result is save to {output_vid_name}") | |
return output_vid_name | |
download_model() # for huggingface deployment. | |
# load model weights | |
audio_processor,vae,unet,pe = load_all_model() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
timesteps = torch.tensor([0], device=device) | |
def check_video(video): | |
# Define the output video file name | |
dir_path, file_name = os.path.split(video) | |
if file_name.startswith("outputxxx_"): | |
return video | |
# Add the output prefix to the file name | |
output_file_name = "outputxxx_" + file_name | |
# Combine the directory path and the new file name | |
output_video = os.path.join(dir_path, output_file_name) | |
# Run the ffmpeg command to change the frame rate to 25fps | |
command = f"ffmpeg -i {video} -r 25 {output_video} -y" | |
subprocess.run(command, shell=True, check=True) | |
return output_video | |
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
"<div align='center'> <h1>MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting </span> </h1> \ | |
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\ | |
</br>\ | |
Yue Zhang <sup>\*</sup>,\ | |
Minhao Liu<sup>\*</sup>,\ | |
Zhaokang Chen,\ | |
Bin Wu<sup>†</sup>,\ | |
Yingjie He,\ | |
Chao Zhan,\ | |
Wenjiang Zhou\ | |
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)\ | |
Lyra Lab, Tencent Music Entertainment\ | |
</h2> \ | |
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\ | |
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\ | |
<a style='font-size:18px;color: #000000' href=''> [Technical report(Coming Soon)] </a>\ | |
<a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> </div>" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
audio = gr.Audio(label="Driven Audio",type="filepath") | |
video = gr.Video(label="Reference Video") | |
bbox_shift = gr.Number(label="BBox_shift,[-9,9]", value=-1) | |
btn = gr.Button("Generate") | |
out1 = gr.Video() | |
video.change( | |
fn=check_video, inputs=[video], outputs=[video] | |
) | |
btn.click( | |
fn=inference, | |
inputs=[ | |
audio, | |
video, | |
bbox_shift, | |
], | |
outputs=out1, | |
) | |
# Set the IP and port | |
ip_address = "0.0.0.0" # Replace with your desired IP address | |
port_number = 7860 # Replace with your desired port number | |
demo.queue().launch( | |
share=False , debug=True, server_name=ip_address, server_port=port_number | |
) | |