Spaces:
Running
on
A10G
Running
on
A10G
#_base_ = ['../../../_base_/default_runtime.py'] | |
_base_ = ['default_runtime.py'] | |
# runtime | |
max_epochs = 270 | |
stage2_num_epochs = 30 | |
base_lr = 4e-3 | |
train_batch_size = 32 | |
val_batch_size = 32 | |
train_cfg = dict(max_epochs=max_epochs, val_interval=10) | |
randomness = dict(seed=21) | |
# optimizer | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05), | |
paramwise_cfg=dict( | |
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) | |
# learning rate | |
param_scheduler = [ | |
dict( | |
type='LinearLR', | |
start_factor=1.0e-5, | |
by_epoch=False, | |
begin=0, | |
end=1000), | |
dict( | |
# use cosine lr from 150 to 300 epoch | |
type='CosineAnnealingLR', | |
eta_min=base_lr * 0.05, | |
begin=max_epochs // 2, | |
end=max_epochs, | |
T_max=max_epochs // 2, | |
by_epoch=True, | |
convert_to_iter_based=True), | |
] | |
# automatically scaling LR based on the actual training batch size | |
auto_scale_lr = dict(base_batch_size=512) | |
# codec settings | |
codec = dict( | |
type='SimCCLabel', | |
input_size=(288, 384), | |
sigma=(6., 6.93), | |
simcc_split_ratio=2.0, | |
normalize=False, | |
use_dark=False) | |
# model settings | |
model = dict( | |
type='TopdownPoseEstimator', | |
data_preprocessor=dict( | |
type='PoseDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True), | |
backbone=dict( | |
_scope_='mmdet', | |
type='CSPNeXt', | |
arch='P5', | |
expand_ratio=0.5, | |
deepen_factor=1., | |
widen_factor=1., | |
out_indices=(4, ), | |
channel_attention=True, | |
norm_cfg=dict(type='SyncBN'), | |
act_cfg=dict(type='SiLU'), | |
init_cfg=dict( | |
type='Pretrained', | |
prefix='backbone.', | |
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/' | |
'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa: E501 | |
)), | |
head=dict( | |
type='RTMCCHead', | |
in_channels=1024, | |
out_channels=133, | |
input_size=codec['input_size'], | |
in_featuremap_size=(9, 12), | |
simcc_split_ratio=codec['simcc_split_ratio'], | |
final_layer_kernel_size=7, | |
gau_cfg=dict( | |
hidden_dims=256, | |
s=128, | |
expansion_factor=2, | |
dropout_rate=0., | |
drop_path=0., | |
act_fn='SiLU', | |
use_rel_bias=False, | |
pos_enc=False), | |
loss=dict( | |
type='KLDiscretLoss', | |
use_target_weight=True, | |
beta=10., | |
label_softmax=True), | |
decoder=codec), | |
test_cfg=dict(flip_test=True, )) | |
# base dataset settings | |
dataset_type = 'UBody2dDataset' | |
data_mode = 'topdown' | |
data_root = 'data/UBody/' | |
backend_args = dict(backend='local') | |
scenes = [ | |
'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow', | |
'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing', | |
'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference' | |
] | |
train_datasets = [ | |
dict( | |
type='CocoWholeBodyDataset', | |
data_root='data/coco/', | |
data_mode=data_mode, | |
ann_file='annotations/coco_wholebody_train_v1.0.json', | |
data_prefix=dict(img='train2017/'), | |
pipeline=[]) | |
] | |
for scene in scenes: | |
train_dataset = dict( | |
type=dataset_type, | |
data_root=data_root, | |
data_mode=data_mode, | |
ann_file=f'annotations/{scene}/train_annotations.json', | |
data_prefix=dict(img='images/'), | |
pipeline=[], | |
sample_interval=10) | |
train_datasets.append(train_dataset) | |
# pipelines | |
train_pipeline = [ | |
dict(type='LoadImage', backend_args=backend_args), | |
dict(type='GetBBoxCenterScale'), | |
dict(type='RandomFlip', direction='horizontal'), | |
dict(type='RandomHalfBody'), | |
dict( | |
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90), | |
dict(type='TopdownAffine', input_size=codec['input_size']), | |
dict(type='mmdet.YOLOXHSVRandomAug'), | |
dict( | |
type='Albumentation', | |
transforms=[ | |
dict(type='Blur', p=0.1), | |
dict(type='MedianBlur', p=0.1), | |
dict( | |
type='CoarseDropout', | |
max_holes=1, | |
max_height=0.4, | |
max_width=0.4, | |
min_holes=1, | |
min_height=0.2, | |
min_width=0.2, | |
p=1.0), | |
]), | |
dict(type='GenerateTarget', encoder=codec), | |
dict(type='PackPoseInputs') | |
] | |
val_pipeline = [ | |
dict(type='LoadImage', backend_args=backend_args), | |
dict(type='GetBBoxCenterScale'), | |
dict(type='TopdownAffine', input_size=codec['input_size']), | |
dict(type='PackPoseInputs') | |
] | |
train_pipeline_stage2 = [ | |
dict(type='LoadImage', backend_args=backend_args), | |
dict(type='GetBBoxCenterScale'), | |
dict(type='RandomFlip', direction='horizontal'), | |
dict(type='RandomHalfBody'), | |
dict( | |
type='RandomBBoxTransform', | |
shift_factor=0., | |
scale_factor=[0.5, 1.5], | |
rotate_factor=90), | |
dict(type='TopdownAffine', input_size=codec['input_size']), | |
dict(type='mmdet.YOLOXHSVRandomAug'), | |
dict( | |
type='Albumentation', | |
transforms=[ | |
dict(type='Blur', p=0.1), | |
dict(type='MedianBlur', p=0.1), | |
dict( | |
type='CoarseDropout', | |
max_holes=1, | |
max_height=0.4, | |
max_width=0.4, | |
min_holes=1, | |
min_height=0.2, | |
min_width=0.2, | |
p=0.5), | |
]), | |
dict(type='GenerateTarget', encoder=codec), | |
dict(type='PackPoseInputs') | |
] | |
# data loaders | |
train_dataloader = dict( | |
batch_size=train_batch_size, | |
num_workers=10, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=dict( | |
type='CombinedDataset', | |
metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'), | |
datasets=train_datasets, | |
pipeline=train_pipeline, | |
test_mode=False, | |
)) | |
val_dataloader = dict( | |
batch_size=val_batch_size, | |
num_workers=10, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | |
dataset=dict( | |
type='CocoWholeBodyDataset', | |
data_root=data_root, | |
data_mode=data_mode, | |
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json', | |
bbox_file='data/coco/person_detection_results/' | |
'COCO_val2017_detections_AP_H_56_person.json', | |
data_prefix=dict(img='coco/val2017/'), | |
test_mode=True, | |
pipeline=val_pipeline, | |
)) | |
test_dataloader = val_dataloader | |
# hooks | |
default_hooks = dict( | |
checkpoint=dict( | |
save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1)) | |
custom_hooks = [ | |
dict( | |
type='EMAHook', | |
ema_type='ExpMomentumEMA', | |
momentum=0.0002, | |
update_buffers=True, | |
priority=49), | |
dict( | |
type='mmdet.PipelineSwitchHook', | |
switch_epoch=max_epochs - stage2_num_epochs, | |
switch_pipeline=train_pipeline_stage2) | |
] | |
# evaluators | |
val_evaluator = dict( | |
type='CocoWholeBodyMetric', | |
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json') | |
test_evaluator = val_evaluator | |