import math import os import matplotlib.pyplot as plt import numpy as np from pytorch_lightning.utilities.seed import seed_everything import torch from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams from risk_biased.utils.cost import ( DistanceCostNumpy, DistanceCostParams, TTCCostNumpy, TTCCostParams, ) from risk_biased.utils.load_model import load_from_config from risk_biased.utils.risk import get_risk_level_sampler from risk_biased.utils.config_argparse import config_argparse if __name__ == "__main__": working_dir = os.path.dirname(os.path.realpath(__file__)) config_path = os.path.join( working_dir, "..", "..", "risk_biased", "config", "learning_config.py" ) config = config_argparse(config_path) model, loaders, config = load_from_config(config) if config.seed is not None: seed_everything(config.seed) risk_sampler = get_risk_level_sampler(config.risk_distribution) is_torch = False n_scenes = 1000 sample_every = 10 # Get a batch of random pedestrians scene_params = RandomSceneParams.from_config(config) scene_params.batch_size = n_scenes scene = RandomScene( scene_params, is_torch=is_torch, ) dist_cost_func = DistanceCostNumpy(DistanceCostParams.from_config(config)) ttc_cost_func = TTCCostNumpy(TTCCostParams.from_config(config)) len_traj = int(config.time_scene / scene.dt) ped_trajs = scene.get_pedestrians_trajectories() ped_trajs_past = ped_trajs[:, :, : config.num_steps] batch_size = ped_trajs.shape[0] ego_traj = scene.get_ego_ref_trajectory(config.sample_times).repeat( batch_size, axis=0 ) normalized_trajs, offset = loaders.normalize_trajectory( torch.from_numpy(ped_trajs.astype("float32")).contiguous() ) x = normalized_trajs[:, :, : config.num_steps] ego_history = ( torch.from_numpy(ego_traj[:, :, : config.num_steps].astype("float32")) .expand_as(x) .contiguous() ) ego_future = ( torch.from_numpy(ego_traj[:, :, -config.num_steps_future :].astype("float32")) .expand(x.shape[0], x.shape[1], -1, -1) .contiguous() ) mask_x = torch.ones_like(x[..., 0]) map = torch.empty(ego_history.shape[0], 0, 0, 2, device=mask_x.device) mask_map = torch.empty(ego_history.shape[0], 0, 0, device=mask_x.device) pred_riskier = ( model.predict_step( (x, mask_x, map, mask_map, offset, ego_history, ego_future), 0, risk_level=risk_sampler.get_highest_risk( batch_size=n_scenes, device="cpu" ).unsqueeze(1), ) .cpu() .detach() .numpy() ) pred = ( model.predict_step( (x, mask_x, map, mask_map, offset, ego_history, ego_future), 0, risk_level=None, ) .cpu() .detach() .numpy() ) ped_trajs_pred = np.concatenate((ped_trajs_past, pred), axis=-2) ped_trajs_pred_riskier = np.concatenate((ped_trajs_past, pred_riskier), axis=-2) travel_distances = np.sqrt( np.square(ped_trajs[..., -1, :] - ped_trajs[..., 0, :]).sum(-1) ) dist_cost, dist = dist_cost_func( ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :] ) ttc_cost, (ttc, dist) = ttc_cost_func( ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :], scene.get_ego_ref_velocity(), scene.get_pedestrians_velocities(), ) travel_distances_pred = np.sqrt( np.square(ped_trajs_pred[..., -1, :] - ped_trajs_pred[..., 0, :]).sum(-1) ) dist_cost_pred, dist_pred = dist_cost_func( ego_traj[:, :, config.num_steps :], ped_trajs_pred[:, :, config.num_steps :] ) sample_times = np.array(config.sample_times) ped_velocities_pred = (ped_trajs_pred[:, :, 1:] - ped_trajs_pred[:, :, :-1]) / ( (sample_times[1:] - sample_times[:-1])[None, None, :, None] ) ped_velocities_pred = np.concatenate( (ped_velocities_pred[:, :, 0:1], ped_velocities_pred), -2 ) ttc_cost_pred, (ttc_pred, dist_pred) = ttc_cost_func( ego_traj[:, :, config.num_steps :], ped_trajs_pred[:, :, config.num_steps :], scene.get_ego_ref_velocity(), ped_velocities_pred[:, :, config.num_steps :], ) travel_distances_pred_riskier = np.sqrt( np.square( ped_trajs_pred_riskier[..., -1, :] - ped_trajs_pred_riskier[..., 0, :] ).sum(-1) ) dist_cost_pred_riskier, dist_pred_riskier = dist_cost_func( ego_traj[:, :, config.num_steps :], ped_trajs_pred_riskier[:, :, config.num_steps :], ) sample_times = np.array(config.sample_times) ped_velocities_pred_riskier = ( ped_trajs_pred_riskier[:, :, 1:] - ped_trajs_pred_riskier[:, :, :-1] ) / ((sample_times[1:] - sample_times[:-1])[None, None, :, None]) ped_velocities_pred_riskier = np.concatenate( (ped_velocities_pred_riskier[:, :, 0:1], ped_velocities_pred_riskier), 2 ) ttc_cost_pred_riskier, (ttc_pred, dist_pred_riskier) = ttc_cost_func( ego_traj[:, :, config.num_steps :], ped_trajs_pred_riskier[:, :, config.num_steps :], scene.get_ego_ref_velocity(), ped_velocities_pred_riskier[:, :, config.num_steps :], ) def plot_histograms(travel_distances, dist_cost, ttc_cost, label=""): # Open the plots for the sampled future times fig, ax = plt.subplots(1, 3) fig.suptitle(label) # Plot histograms of traveled distances, depending on the parameters. # It should be multi-modal. There is a minimum distance and a maximum distance and travel distance variations within these bounds. ax[0].set_title("Travel distance") ax[1].set_title("Distance cost") ax[2].set_title("TTC cost") ax[0].hist(travel_distances, bins=30) ax[1].hist(dist_cost.flatten(), bins=30) ax[1].set_ylim([0, 3 * math.sqrt(n_scenes)]) ax[2].hist(ttc_cost.flatten(), bins=30) ax[2].set_ylim([0, 3 * math.sqrt(n_scenes)]) agent_selected = 0 plot_histograms( travel_distances[:, agent_selected], dist_cost[:, agent_selected], ttc_cost[:, agent_selected], "Data", ) plot_histograms( travel_distances_pred[:, agent_selected], dist_cost_pred[:, agent_selected], ttc_cost_pred[:, agent_selected], "Prediction normal risk", ) plot_histograms( travel_distances_pred_riskier[:, agent_selected], dist_cost_pred_riskier[:, agent_selected], ttc_cost_pred_riskier[:, agent_selected], "Prediction high risk", ) print(f"Average ttc risk") print( f"Ground truth: {ttc_cost.mean()}, Prediction: {ttc_cost_pred.mean()}, Biased prediction: {ttc_cost_pred_riskier.mean()}" ) plt.show()