vlm-demo / interactive_demo.py
abalakrishnaTRI's picture
support fused backbones and update MODEL_ID_TO_NAME
6ba6dce
raw
history blame
No virus
10.7 kB
"""
interactive_demo.py
Entry point for all VLM-Bench interactive demos; specify model and get a gradio UI where you can chat with it!
This file is heavily adapted from the script used to serve models in the LLaVa repo:
https://github.com/haotian-liu/LLaVA/blob/main/llava/serve/model_worker.py. It is
modified to ensure compatibility with our Prismatic models.
"""
import asyncio
import json
import os
import threading
import time
import uuid
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from typing import Union
import draccus
import requests
import torch
import uvicorn
from accelerate.utils import set_seed
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import StreamingResponse
from llava.constants import WORKER_HEART_BEAT_INTERVAL
from llava.mm_utils import load_image_from_base64
from llava.utils import server_error_msg
from torchvision.transforms import Compose
from vlbench.models import load_vlm
from vlbench.overwatch import initialize_overwatch
from serve import INTERACTION_MODES_MAP, MODEL_ID_TO_NAME
GB = 1 << 30
worker_id = str(uuid.uuid4())[:6]
global_counter = 0
model_semaphore = None
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class ModelWorker:
def __init__(self, controller_addr, worker_addr, worker_id, no_register, vlm, model_base, model_name):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
self.model_name = model_name
# logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
self.vlm = vlm
self.tokenizer, self.model, self.image_processor, self.context_len = (
vlm.tokenizer,
vlm.model,
vlm.image_processor,
vlm.max_length,
)
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(target=heart_beat_worker, args=(self,))
self.heart_beat_thread.start()
def register_to_controller(self):
# logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {"worker_name": self.worker_addr, "check_heart_beat": True, "worker_status": self.get_status()}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
# logger.info(f"Send heart beat. Models: {[self.model_name]}. "
# f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
# f"global_counter: {global_counter}")
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url, json={"worker_name": self.worker_addr, "queue_length": self.get_queue_length()}, timeout=5
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException:
pass
# logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return (
limit_model_concurrency
- model_semaphore._value
+ (len(model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
)
def get_status(self):
return {
"model_names": [self.model_name],
"speed": 1,
"queue_length": self.get_queue_length(),
}
@torch.inference_mode()
def generate_stream(self, params):
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
temperature = params.get("temperature", 0.2)
max_new_tokens = params.get("max_new_tokens", 2048)
interaction_mode = INTERACTION_MODES_MAP[params.get("interaction_mode", "Chat")]
if temperature != 0:
self.vlm.set_generate_kwargs(
{"do_sample": True, "max_new_tokens": max_new_tokens, "temperature": temperature}
)
else:
self.vlm.set_generate_kwargs({"do_sample": False, "max_new_tokens": max_new_tokens})
if images is not None and len(images) == 1:
images = [load_image_from_base64(image) for image in images]
else:
raise NotImplementedError("Only supports queries with one image for now")
if interaction_mode == "chat":
question_prompt = [prompt]
else:
prompt_fn = self.vlm.get_prompt_fn(interaction_mode)
if interaction_mode != "captioning":
question_prompt = [prompt_fn(prompt)]
else:
question_prompt = [prompt_fn()]
if isinstance(self.image_processor, Compose) or hasattr(self.image_processor, "is_prismatic"):
# This is a standard `torchvision.transforms` object or custom PrismaticVLM wrapper
pixel_values = self.image_processor(images[0].convert("RGB"))
else:
# Assume `image_transform` is a HF ImageProcessor...
pixel_values = self.image_processor(images[0].convert("RGB"), return_tensors="pt")["pixel_values"][0]
if type(pixel_values) is dict:
for k in pixel_values.keys():
pixel_values[k] = torch.unsqueeze(pixel_values[k].cuda(), 0)
else:
pixel_values = torch.unsqueeze(pixel_values.cuda(), 0)
generated_text = self.vlm.generate_answer(pixel_values, question_prompt)[0]
generated_text = generated_text.split("USER")[0].split("ASSISTANT")[0]
yield json.dumps({"text": ori_prompt + generated_text, "error_code": 0}).encode() + b"\0"
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
app = FastAPI()
def release_model_semaphore(fn=None):
model_semaphore.release()
if fn is not None:
fn()
@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
global model_semaphore, global_counter
global_counter += 1
params = await request.json()
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(limit_model_concurrency)
await model_semaphore.acquire()
worker.send_heart_beat()
generator = worker.generate_stream_gate(params)
background_tasks = BackgroundTasks()
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_get_status")
async def get_status(request: Request):
return worker.get_status()
# Initialize Overwatch =>> Wraps `logging.Logger` and `accelerate.PartialState`
overwatch = initialize_overwatch(__name__)
@dataclass
class DemoConfig:
# fmt: off
# === Model Parameters =>> Quartz ===
model_family: str = "quartz" # Model family to load from in < `quartz` | `llava-v15` | ... >
model_id: str = "llava-v1.5-7b" # Model ID to load and run (instance of `model_family`)
model_dir: Path = ( # Path to model checkpoint to load --> should be self-contained
"resize-naive-siglip-vit-l-16-384px-no-align-2-epochs+13b+stage-finetune+x7"
)
# === Model Parameters =>> Official LLaVa ===
# model_family: str = "llava-v15"
# model_id: str = "llava-v1.5-13b"
# model_dir: Path = "liuhaotian/llava-v1.5-13b"
# Model Worker Parameters
host: str = "0.0.0.0"
port: int = 40000
controller_address: str = "http://localhost:10000"
model_base: str = "llava-v15"
limit_model_concurrency: int = 5
stream_interval: int = 1
no_register: bool = False
# Inference Parameters
device_batch_size: int = 1 # Device Batch Size set to 1 until LLaVa/HF LLaMa fixes bugs!
num_workers: int = 2 # Number of Dataloader Workers (on each process)
# HF Hub Credentials (for LLaMa-2)
hf_token: Union[str, Path] = Path(".hf_token") # Environment variable or Path to HF Token
# Randomness
seed: int = 21 # Random Seed (for reproducibility)
def __post_init__(self) -> None:
if self.model_family == "quartz":
self.model_name = MODEL_ID_TO_NAME[str(self.model_dir)]
self.run_dir = Path("/mnt/fsx/x-onyx-vlms/runs") / self.model_dir
elif self.model_family in {"instruct-blip", "llava", "llava-v15"}:
self.model_name = MODEL_ID_TO_NAME[self.model_id]
self.run_dir = self.model_dir
else:
raise ValueError(f"Run Directory for `{self.model_family = }` does not exist!")
self.worker_address = f"http://localhost:{self.port}"
# fmt: on
@draccus.wrap()
def interactive_demo(cfg: DemoConfig):
# overwatch.info(f"Starting Evaluation for Dataset `{cfg.dataset.dataset_id}` w/ Model `{cfg.model_id}`")
set_seed(cfg.seed)
# Build the VLM --> Download/Load Pretrained Model from Checkpoint
overwatch.info("Initializing VLM =>> Bundling Models, Image Processors, and Tokenizer")
hf_token = cfg.hf_token.read_text().strip() if isinstance(cfg.hf_token, Path) else os.environ[cfg.hf_token]
vlm = load_vlm(cfg.model_family, cfg.model_id, cfg.run_dir, hf_token=hf_token)
global worker
global limit_model_concurrency
limit_model_concurrency = cfg.limit_model_concurrency
worker = ModelWorker(
cfg.controller_address, cfg.worker_address, worker_id, cfg.no_register, vlm, cfg.model_base, cfg.model_name
)
uvicorn.run(app, host=cfg.host, port=cfg.port, log_level="info")
if __name__ == "__main__":
interactive_demo()