Spaces:
Runtime error
Runtime error
zeynepgulhan
commited on
app file created
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
|
7 |
+
from turkish.deasciifier import Deasciifier
|
8 |
+
|
9 |
+
# Model ve tokenizer initialization
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("TURKCELL/bert-offensive-lang-detection-tr")
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained("TURKCELL/bert-offensive-lang-detection-tr")
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
|
16 |
+
def deasciifier(text):
|
17 |
+
deasciifier = Deasciifier(text)
|
18 |
+
return deasciifier.convert_to_turkish()
|
19 |
+
|
20 |
+
|
21 |
+
def remove_circumflex(text):
|
22 |
+
circumflex_map = {
|
23 |
+
'â': 'a',
|
24 |
+
'î': 'i',
|
25 |
+
'û': 'u',
|
26 |
+
'ô': 'o',
|
27 |
+
'Â': 'A',
|
28 |
+
'Î': 'I',
|
29 |
+
'Û': 'U',
|
30 |
+
'Ô': 'O'
|
31 |
+
}
|
32 |
+
|
33 |
+
return ''.join(circumflex_map.get(c, c) for c in text)
|
34 |
+
|
35 |
+
|
36 |
+
def turkish_lower(text):
|
37 |
+
turkish_map = {
|
38 |
+
'I': 'ı',
|
39 |
+
'İ': 'i',
|
40 |
+
'Ç': 'ç',
|
41 |
+
'Ş': 'ş',
|
42 |
+
'Ğ': 'ğ',
|
43 |
+
'Ü': 'ü',
|
44 |
+
'Ö': 'ö'
|
45 |
+
}
|
46 |
+
return ''.join(turkish_map.get(c, c).lower() for c in text)
|
47 |
+
|
48 |
+
|
49 |
+
def clean_text(text):
|
50 |
+
# Metindeki şapkalı harfleri kaldırma
|
51 |
+
text = remove_circumflex(text)
|
52 |
+
# Metni küçük harfe dönüştürme
|
53 |
+
text = turkish_lower(text)
|
54 |
+
# deasciifier
|
55 |
+
text = deasciifier(text)
|
56 |
+
# Kullanıcı adlarını kaldırma
|
57 |
+
text = re.sub(r"@\S*", " ", text)
|
58 |
+
# Hashtag'leri kaldırma
|
59 |
+
text = re.sub(r'#\S+', ' ', text)
|
60 |
+
# URL'leri kaldırma
|
61 |
+
text = re.sub(r"http\S+|www\S+|https\S+", ' ', text, flags=re.MULTILINE)
|
62 |
+
# Noktalama işaretlerini ve metin tabanlı emojileri kaldırma
|
63 |
+
text = re.sub(r'[^\w\s]|(:\)|:\(|:D|:P|:o|:O|;\))', ' ', text)
|
64 |
+
# Emojileri kaldırma
|
65 |
+
emoji_pattern = re.compile("["
|
66 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
67 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
68 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
69 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
70 |
+
u"\U00002702-\U000027B0"
|
71 |
+
u"\U000024C2-\U0001F251"
|
72 |
+
"]+", flags=re.UNICODE)
|
73 |
+
text = emoji_pattern.sub(r' ', text)
|
74 |
+
|
75 |
+
# Birden fazla boşluğu tek boşlukla değiştirme
|
76 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
77 |
+
return text
|
78 |
+
|
79 |
+
|
80 |
+
def is_offensive(sentence):
|
81 |
+
normalize_text = clean_text(sentence)
|
82 |
+
|
83 |
+
test_sample = tokenizer(normalize_text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
84 |
+
test_sample = {k: v.to(device) for k, v in test_sample.items()}
|
85 |
+
|
86 |
+
output = model(**test_sample)
|
87 |
+
y_pred = np.argmax(output.logits.detach().cpu().numpy(), axis=1)
|
88 |
+
|
89 |
+
d = {0: 'non-offensive', 1: 'offensive'}
|
90 |
+
return d[y_pred[0]]
|
91 |
+
|
92 |
+
|
93 |
+
iface = gr.Interface(
|
94 |
+
fn=is_offensive,
|
95 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter sentence here..."),
|
96 |
+
outputs="text",
|
97 |
+
title="Offensive Language Detection",
|
98 |
+
description="Offensive language detection for Turkish"
|
99 |
+
)
|
100 |
+
|
101 |
+
iface.launch()
|