import streamlit as st import os import google.generativeai as genai from dotenv import load_dotenv load_dotenv() #Load all env variables from PIL import Image genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Backend Function to load Gemini Pro Vision and get response def get_gemini_repsonse(input, image, prompt): model = genai.GenerativeModel('gemini-pro-vision') response = model.generate_content([input, image[0], prompt]) return response.text def input_image_setup(uploaded_file): # Check if a file has been uploaded if uploaded_file is not None: # Read the file into bytes bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") ##initialize our streamlit app st.set_page_config(page_title="Cal Advisor App") st.header("Cal Advisor App") input = st.text_input("Input Prompt: ", key="input") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) image = "" if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) submit = st.button("Tell me the total calories") input_prompt = """ You are an expert in nutritionist where you need to see the food items from the image and calculate the total calories, also provide the details of every food items with calories intake is below format 1. Item 1 - no of calories 2. Item 2 - no of calories ---- ---- """ # If submit button is clicked if submit: image_data = input_image_setup(uploaded_file) response = get_gemini_repsonse(input_prompt, image_data, input) st.subheader("The Response is") st.write(response)