Spaces:
Runtime error
Runtime error
File size: 6,396 Bytes
1ccdd5a d5f5e05 1ccdd5a d213847 1ccdd5a d213847 1ccdd5a def7fc3 2083ffe dda1ebd d213847 1ccdd5a 17dc250 1ccdd5a dd184ef 607ae4f dd184ef 607ae4f 1ccdd5a d213847 1ccdd5a d213847 1ccdd5a 292ba65 1ccdd5a d213847 1ccdd5a b392eb0 1ccdd5a d213847 3383b5d d213847 b0fb0fe 1ccdd5a d213847 1ccdd5a ee8b768 1ccdd5a d213847 ee8b768 d213847 ee8b768 d213847 ee8b768 d213847 607ae4f d213847 1ccdd5a ee8b768 cc56a6c dda1ebd ee8b768 1ccdd5a ee8b768 cc56a6c ee8b768 6482360 ee8b768 1ccdd5a 856701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import sys
tabpfn_path = 'TabPFN'
sys.path.insert(0, tabpfn_path) # our submodule of the TabPFN repo (at 045c8400203ebd062346970b4f2c0ccda5a40618)
from TabPFN.scripts.transformer_prediction_interface import TabPFNClassifier
from decision_boundary import DecisionBoundaryDisplay
import numpy as np
from pathlib import Path
import pandas as pd
import torch
import gradio as gr
import openml
import os
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
default_device = "cuda:0" if torch.cuda.is_available() else "cpu:0"
classifier = TabPFNClassifier(base_path=tabpfn_path, device=default_device, N_ensemble_configurations=4)
def compute(df_table):
headers = df_table.columns
table = df_table.to_numpy()
vfunc = np.vectorize(lambda s: len(str(s)))
non_empty_row_mask = (vfunc(table).sum(1) != 0)
table = table[non_empty_row_mask]
empty_mask = table == ''
empty_inds = np.where(empty_mask)
if table.shape[0] > 1024:
return "⚠️ **ERROR: TabPFN is not made for datasets with a trainingsize > 1024.**", None, None
if table.shape[1] > 100:
return "⚠️ **ERROR: TabPFN is not made for datasets with a feature size > 100.**", None, None
if not len(empty_inds[0]):
return "⚠️ **ERROR: Please leave at least one field blank for prediction.**", None, None
if not np.all(empty_inds[1][0] == empty_inds[1]):
return "⚠️ **Please only leave fields of one column blank for prediction.**", None, None
y_column = empty_inds[1][0]
eval_lines = empty_inds[0]
train_table = np.delete(table, eval_lines, axis=0)
eval_table = table[eval_lines]
try:
x_train = torch.tensor(np.delete(train_table, y_column, axis=1).astype(np.float32))
x_eval = torch.tensor(np.delete(eval_table, y_column, axis=1).astype(np.float32))
#y_train = train_table[:, y_column]
y_train = np.array(train_table[:, y_column].tolist())
except ValueError:
return "⚠️ **Please only add numbers (to the inputs) or leave fields empty.**", None, None
print(y_train)
print(y_train[:10],y_train[-10:])
classifier.fit(x_train, y_train)
y_eval, p_eval = classifier.predict(x_eval, return_winning_probability=True)
# print(file, type(file))
out_table = pd.DataFrame(table.copy().astype(str))
out_table.iloc[eval_lines, y_column] = [f"{y_e} (p={p_e:.2f})" for y_e, p_e in zip(y_eval, p_eval)]
out_table = out_table.iloc[eval_lines, :]
out_table.columns = headers
# PLOTTING
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111)
cm = plt.cm.RdBu
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
# Plot the training points
vfunc = np.vectorize(lambda x : np.where(classifier.classes_ == x)[0])
y_train_index = vfunc(y_train)
y_train_index = y_train_index == 0
y_train = y_train_index
#x_train = x_train[y_train_index <= 1]
#y_train = y_train[y_train_index <= 1]
#y_train_index = y_train_index[y_train_index <= 1]
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train_index, cmap=cm_bright)
classifier.fit(x_train[:, 0:2], y_train)
DecisionBoundaryDisplay.from_estimator(
classifier, x_train[:, 0:2], alpha=0.6, ax=ax, eps=2.0, grid_resolution=25, response_method="predict_proba"
)
plt.xlabel(headers[0])
plt.ylabel(headers[1])
return "The plot visualizes a predictor based on only two features and for two classes. The tabular results below are based on the full dataset.\nThis demo is running on a CPU only and with 4 ensemble members (32 in the paper).", out_table, fig
def upload_file(file, remove_entries=10):
if file.name.endswith('.arff'):
dataset = openml.datasets.OpenMLDataset('t', 'test', data_file=file.name)
X_, _, categorical_indicator_, attribute_names_ = dataset.get_data(
dataset_format="array"
)
df = pd.DataFrame(X_, columns=attribute_names_)
headers = np.arange(len(df.columns))
df.columns = headers
elif file.name.endswith('.csv') or file.name.endswith('.data'):
df = pd.read_csv(file.name, header='infer')
headers = np.arange(len(df.columns))
df.columns = headers
df.iloc[0:remove_entries, -1] = ''
return df
def update_table(table):
vfunc = np.vectorize(lambda s: len(str(s)))
non_empty_row_mask = (vfunc(table).sum(1) != 0)
table = table[non_empty_row_mask]
empty_mask = table == ''
empty_inds = np.where(empty_mask)
if not len(empty_inds[0]):
return table
y_column = empty_inds[1][0]
eval_lines = empty_inds[0]
table.iloc[eval_lines, y_column] = ''
return table
gr.Markdown("""This demo allows you to experiment with the **TabPFN** model for tabular data.
If you remove values in the target column, TabPFN will make predictions on them after clicking on the Button. The first 10 target values were already removed for this example dataset, so TabPFN will predict the first 10 classes.
Please, provide everything but the targets as numeric values and only remove values in one column (the target column).
""")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
inp_table = gr.DataFrame(type='pandas', value=upload_file(Path('iris.csv'), remove_entries=10)
, headers=[''] * 5)
inp_file = gr.File(
label='Drop either a .csv (without header, only numeric values for all but the labels) or a .arff file.')
examples = gr.Examples(examples=['iris.csv', 'balance-scale.arff'],
inputs=[inp_file],
outputs=[inp_table],
fn=upload_file,
cache_examples=True)
#inp_table.change(fn=update_table, inputs=inp_table, outputs=inp_table)
with gr.Column():
btn = gr.Button("Calculate Predictions")
out_text = gr.Markdown()
out_plot = gr.Plot(type="Matplotlib")
out_table = gr.DataFrame()
btn.click(fn=compute, inputs=inp_table, outputs=[out_text, out_table, out_plot])
inp_file.change(fn=upload_file, inputs=inp_file, outputs=inp_table)
demo.launch() |