TabPFNPrediction / decision_boundary.py
TabPFN's picture
Create new file
0f0db0b
raw
history blame
11.9 kB
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from functools import reduce
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import check_matplotlib_support
from sklearn.utils import _safe_indexing
from sklearn.base import is_regressor
from sklearn.utils.validation import check_is_fitted
def _check_boundary_response_method(estimator, response_method):
"""Return prediction method from the `response_method` for decision boundary.
Parameters
----------
estimator : object
Fitted estimator to check.
response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
Specifies whether to use :term:`predict_proba`,
:term:`decision_function`, :term:`predict` as the target response.
If set to 'auto', the response method is tried in the following order:
:term:`decision_function`, :term:`predict_proba`, :term:`predict`.
Returns
-------
prediction_method: callable
Prediction method of estimator.
"""
has_classes = hasattr(estimator, "classes_")
if has_classes and len(estimator.classes_) > 2:
if response_method not in {"auto", "predict"}:
msg = (
"Multiclass classifiers are only supported when response_method is"
" 'predict' or 'auto'"
)
raise ValueError(msg)
methods_list = ["predict"]
elif response_method == "auto":
methods_list = ["decision_function", "predict_proba", "predict"]
else:
methods_list = [response_method]
prediction_method = [getattr(estimator, method, None) for method in methods_list]
prediction_method = reduce(lambda x, y: x or y, prediction_method)
if prediction_method is None:
raise ValueError(
f"{estimator.__class__.__name__} has none of the following attributes: "
f"{', '.join(methods_list)}."
)
return prediction_method
class DecisionBoundaryDisplay:
"""Decisions boundary visualization.
It is recommended to use
:func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
attributes.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 1.1
Parameters
----------
xx0 : ndarray of shape (grid_resolution, grid_resolution)
First output of :func:`meshgrid <numpy.meshgrid>`.
xx1 : ndarray of shape (grid_resolution, grid_resolution)
Second output of :func:`meshgrid <numpy.meshgrid>`.
response : ndarray of shape (grid_resolution, grid_resolution)
Values of the response function.
xlabel : str, default=None
Default label to place on x axis.
ylabel : str, default=None
Default label to place on y axis.
Attributes
----------
surface_ : matplotlib `QuadContourSet` or `QuadMesh`
If `plot_method` is 'contour' or 'contourf', `surface_` is a
:class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
`plot_method is `pcolormesh`, `surface_` is a
:class:`QuadMesh <matplotlib.collections.QuadMesh>`.
ax_ : matplotlib Axes
Axes with confusion matrix.
figure_ : matplotlib Figure
Figure containing the confusion matrix.
"""
def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None):
self.xx0 = xx0
self.xx1 = xx1
self.response = response
self.xlabel = xlabel
self.ylabel = ylabel
def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
"""Plot visualization.
Parameters
----------
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
Plotting method to call when plotting the response. Please refer
to the following matplotlib documentation for details:
:func:`contourf <matplotlib.pyplot.contourf>`,
:func:`contour <matplotlib.pyplot.contour>`,
:func:`pcolomesh <matplotlib.pyplot.pcolomesh>`.
ax : Matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
xlabel : str, default=None
Overwrite the x-axis label.
ylabel : str, default=None
Overwrite the y-axis label.
**kwargs : dict
Additional keyword arguments to be passed to the `plot_method`.
Returns
-------
display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
"""
check_matplotlib_support("DecisionBoundaryDisplay.plot")
import matplotlib.pyplot as plt # noqa
if plot_method not in ("contourf", "contour", "pcolormesh"):
raise ValueError(
"plot_method must be 'contourf', 'contour', or 'pcolormesh'"
)
if ax is None:
_, ax = plt.subplots()
plot_func = getattr(ax, plot_method)
self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)
if xlabel is not None or not ax.get_xlabel():
xlabel = self.xlabel if xlabel is None else xlabel
ax.set_xlabel(xlabel)
if ylabel is not None or not ax.get_ylabel():
ylabel = self.ylabel if ylabel is None else ylabel
ax.set_ylabel(ylabel)
self.ax_ = ax
self.figure_ = ax.figure
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
*,
grid_resolution=100,
eps=1.0,
plot_method="contourf",
response_method="auto",
xlabel=None,
ylabel=None,
ax=None,
**kwargs,
):
"""Plot decision boundary given an estimator.
Read more in the :ref:`User Guide <visualizations>`.
Parameters
----------
estimator : object
Trained estimator used to plot the decision boundary.
X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
Input data that should be only 2-dimensional.
grid_resolution : int, default=100
Number of grid points to use for plotting decision boundary.
Higher values will make the plot look nicer but be slower to
render.
eps : float, default=1.0
Extends the minimum and maximum values of X for evaluating the
response function.
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
Plotting method to call when plotting the response. Please refer
to the following matplotlib documentation for details:
:func:`contourf <matplotlib.pyplot.contourf>`,
:func:`contour <matplotlib.pyplot.contour>`,
:func:`pcolomesh <matplotlib.pyplot.pcolomesh>`.
response_method : {'auto', 'predict_proba', 'decision_function', \
'predict'}, default='auto'
Specifies whether to use :term:`predict_proba`,
:term:`decision_function`, :term:`predict` as the target response.
If set to 'auto', the response method is tried in the following order:
:term:`decision_function`, :term:`predict_proba`, :term:`predict`.
For multiclass problems, :term:`predict` is selected when
`response_method="auto"`.
xlabel : str, default=None
The label used for the x-axis. If `None`, an attempt is made to
extract a label from `X` if it is a dataframe, otherwise an empty
string is used.
ylabel : str, default=None
The label used for the y-axis. If `None`, an attempt is made to
extract a label from `X` if it is a dataframe, otherwise an empty
string is used.
ax : Matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Additional keyword arguments to be passed to the
`plot_method`.
Returns
-------
display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
Object that stores the result.
See Also
--------
DecisionBoundaryDisplay : Decision boundary visualization.
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
given an estimator, the data, and the label.
ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
given the true and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.inspection import DecisionBoundaryDisplay
>>> iris = load_iris()
>>> X = iris.data[:, :2]
>>> classifier = LogisticRegression().fit(X, iris.target)
>>> disp = DecisionBoundaryDisplay.from_estimator(
... classifier, X, response_method="predict",
... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
... alpha=0.5,
... )
>>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_estimator")
check_is_fitted(estimator)
if not grid_resolution > 1:
raise ValueError(
"grid_resolution must be greater than 1. Got"
f" {grid_resolution} instead."
)
if not eps >= 0:
raise ValueError(
f"eps must be greater than or equal to 0. Got {eps} instead."
)
possible_plot_methods = ("contourf", "contour", "pcolormesh")
if plot_method not in possible_plot_methods:
available_methods = ", ".join(possible_plot_methods)
raise ValueError(
f"plot_method must be one of {available_methods}. "
f"Got {plot_method} instead."
)
x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
xx0, xx1 = np.meshgrid(
np.linspace(x0_min, x0_max, grid_resolution),
np.linspace(x1_min, x1_max, grid_resolution),
)
if hasattr(X, "iloc"):
# we need to preserve the feature names and therefore get an empty dataframe
X_grid = X.iloc[[], :].copy()
X_grid.iloc[:, 0] = xx0.ravel()
X_grid.iloc[:, 1] = xx1.ravel()
else:
X_grid = np.c_[xx0.ravel(), xx1.ravel()]
pred_func = _check_boundary_response_method(estimator, response_method)
response = pred_func(X_grid)
# convert classes predictions into integers
if pred_func.__name__ == "predict" and hasattr(estimator, "classes_"):
encoder = LabelEncoder()
encoder.classes_ = estimator.classes_
response = encoder.transform(response)
if response.ndim != 1:
if is_regressor(estimator):
raise ValueError("Multi-output regressors are not supported")
# TODO: Support pos_label
response = response[:, 1]
if xlabel is None:
xlabel = X.columns[0] if hasattr(X, "columns") else ""
if ylabel is None:
ylabel = X.columns[1] if hasattr(X, "columns") else ""
display = DecisionBoundaryDisplay(
xx0=xx0,
xx1=xx1,
response=response.reshape(xx0.shape),
xlabel=xlabel,
ylabel=ylabel,
)
return display.plot(ax=ax, plot_method=plot_method, **kwargs)