Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
from matplotlib.colors import ListedColormap | |
from functools import reduce | |
import numpy as np | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.utils import check_matplotlib_support | |
from sklearn.utils import _safe_indexing | |
from sklearn.base import is_regressor | |
from sklearn.utils.validation import check_is_fitted | |
def _check_boundary_response_method(estimator, response_method): | |
"""Return prediction method from the `response_method` for decision boundary. | |
Parameters | |
---------- | |
estimator : object | |
Fitted estimator to check. | |
response_method : {'auto', 'predict_proba', 'decision_function', 'predict'} | |
Specifies whether to use :term:`predict_proba`, | |
:term:`decision_function`, :term:`predict` as the target response. | |
If set to 'auto', the response method is tried in the following order: | |
:term:`decision_function`, :term:`predict_proba`, :term:`predict`. | |
Returns | |
------- | |
prediction_method: callable | |
Prediction method of estimator. | |
""" | |
has_classes = hasattr(estimator, "classes_") | |
if has_classes and len(estimator.classes_) > 2: | |
if response_method not in {"auto", "predict"}: | |
msg = ( | |
"Multiclass classifiers are only supported when response_method is" | |
" 'predict' or 'auto'" | |
) | |
raise ValueError(msg) | |
methods_list = ["predict"] | |
elif response_method == "auto": | |
methods_list = ["decision_function", "predict_proba", "predict"] | |
else: | |
methods_list = [response_method] | |
prediction_method = [getattr(estimator, method, None) for method in methods_list] | |
prediction_method = reduce(lambda x, y: x or y, prediction_method) | |
if prediction_method is None: | |
raise ValueError( | |
f"{estimator.__class__.__name__} has none of the following attributes: " | |
f"{', '.join(methods_list)}." | |
) | |
return prediction_method | |
class DecisionBoundaryDisplay: | |
"""Decisions boundary visualization. | |
It is recommended to use | |
:func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator` | |
to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as | |
attributes. | |
Read more in the :ref:`User Guide <visualizations>`. | |
.. versionadded:: 1.1 | |
Parameters | |
---------- | |
xx0 : ndarray of shape (grid_resolution, grid_resolution) | |
First output of :func:`meshgrid <numpy.meshgrid>`. | |
xx1 : ndarray of shape (grid_resolution, grid_resolution) | |
Second output of :func:`meshgrid <numpy.meshgrid>`. | |
response : ndarray of shape (grid_resolution, grid_resolution) | |
Values of the response function. | |
xlabel : str, default=None | |
Default label to place on x axis. | |
ylabel : str, default=None | |
Default label to place on y axis. | |
Attributes | |
---------- | |
surface_ : matplotlib `QuadContourSet` or `QuadMesh` | |
If `plot_method` is 'contour' or 'contourf', `surface_` is a | |
:class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If | |
`plot_method is `pcolormesh`, `surface_` is a | |
:class:`QuadMesh <matplotlib.collections.QuadMesh>`. | |
ax_ : matplotlib Axes | |
Axes with confusion matrix. | |
figure_ : matplotlib Figure | |
Figure containing the confusion matrix. | |
""" | |
def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None): | |
self.xx0 = xx0 | |
self.xx1 = xx1 | |
self.response = response | |
self.xlabel = xlabel | |
self.ylabel = ylabel | |
def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs): | |
"""Plot visualization. | |
Parameters | |
---------- | |
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf' | |
Plotting method to call when plotting the response. Please refer | |
to the following matplotlib documentation for details: | |
:func:`contourf <matplotlib.pyplot.contourf>`, | |
:func:`contour <matplotlib.pyplot.contour>`, | |
:func:`pcolomesh <matplotlib.pyplot.pcolomesh>`. | |
ax : Matplotlib axes, default=None | |
Axes object to plot on. If `None`, a new figure and axes is | |
created. | |
xlabel : str, default=None | |
Overwrite the x-axis label. | |
ylabel : str, default=None | |
Overwrite the y-axis label. | |
**kwargs : dict | |
Additional keyword arguments to be passed to the `plot_method`. | |
Returns | |
------- | |
display: :class:`~sklearn.inspection.DecisionBoundaryDisplay` | |
""" | |
check_matplotlib_support("DecisionBoundaryDisplay.plot") | |
import matplotlib.pyplot as plt # noqa | |
if plot_method not in ("contourf", "contour", "pcolormesh"): | |
raise ValueError( | |
"plot_method must be 'contourf', 'contour', or 'pcolormesh'" | |
) | |
if ax is None: | |
_, ax = plt.subplots() | |
plot_func = getattr(ax, plot_method) | |
self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs) | |
if xlabel is not None or not ax.get_xlabel(): | |
xlabel = self.xlabel if xlabel is None else xlabel | |
ax.set_xlabel(xlabel) | |
if ylabel is not None or not ax.get_ylabel(): | |
ylabel = self.ylabel if ylabel is None else ylabel | |
ax.set_ylabel(ylabel) | |
self.ax_ = ax | |
self.figure_ = ax.figure | |
return self | |
def from_estimator( | |
cls, | |
estimator, | |
X, | |
*, | |
grid_resolution=100, | |
eps=1.0, | |
plot_method="contourf", | |
response_method="auto", | |
xlabel=None, | |
ylabel=None, | |
ax=None, | |
**kwargs, | |
): | |
"""Plot decision boundary given an estimator. | |
Read more in the :ref:`User Guide <visualizations>`. | |
Parameters | |
---------- | |
estimator : object | |
Trained estimator used to plot the decision boundary. | |
X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2) | |
Input data that should be only 2-dimensional. | |
grid_resolution : int, default=100 | |
Number of grid points to use for plotting decision boundary. | |
Higher values will make the plot look nicer but be slower to | |
render. | |
eps : float, default=1.0 | |
Extends the minimum and maximum values of X for evaluating the | |
response function. | |
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf' | |
Plotting method to call when plotting the response. Please refer | |
to the following matplotlib documentation for details: | |
:func:`contourf <matplotlib.pyplot.contourf>`, | |
:func:`contour <matplotlib.pyplot.contour>`, | |
:func:`pcolomesh <matplotlib.pyplot.pcolomesh>`. | |
response_method : {'auto', 'predict_proba', 'decision_function', \ | |
'predict'}, default='auto' | |
Specifies whether to use :term:`predict_proba`, | |
:term:`decision_function`, :term:`predict` as the target response. | |
If set to 'auto', the response method is tried in the following order: | |
:term:`decision_function`, :term:`predict_proba`, :term:`predict`. | |
For multiclass problems, :term:`predict` is selected when | |
`response_method="auto"`. | |
xlabel : str, default=None | |
The label used for the x-axis. If `None`, an attempt is made to | |
extract a label from `X` if it is a dataframe, otherwise an empty | |
string is used. | |
ylabel : str, default=None | |
The label used for the y-axis. If `None`, an attempt is made to | |
extract a label from `X` if it is a dataframe, otherwise an empty | |
string is used. | |
ax : Matplotlib axes, default=None | |
Axes object to plot on. If `None`, a new figure and axes is | |
created. | |
**kwargs : dict | |
Additional keyword arguments to be passed to the | |
`plot_method`. | |
Returns | |
------- | |
display : :class:`~sklearn.inspection.DecisionBoundaryDisplay` | |
Object that stores the result. | |
See Also | |
-------- | |
DecisionBoundaryDisplay : Decision boundary visualization. | |
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix | |
given an estimator, the data, and the label. | |
ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix | |
given the true and predicted labels. | |
Examples | |
-------- | |
>>> import matplotlib.pyplot as plt | |
>>> from sklearn.datasets import load_iris | |
>>> from sklearn.linear_model import LogisticRegression | |
>>> from sklearn.inspection import DecisionBoundaryDisplay | |
>>> iris = load_iris() | |
>>> X = iris.data[:, :2] | |
>>> classifier = LogisticRegression().fit(X, iris.target) | |
>>> disp = DecisionBoundaryDisplay.from_estimator( | |
... classifier, X, response_method="predict", | |
... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], | |
... alpha=0.5, | |
... ) | |
>>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k") | |
<...> | |
>>> plt.show() | |
""" | |
check_matplotlib_support(f"{cls.__name__}.from_estimator") | |
check_is_fitted(estimator) | |
if not grid_resolution > 1: | |
raise ValueError( | |
"grid_resolution must be greater than 1. Got" | |
f" {grid_resolution} instead." | |
) | |
if not eps >= 0: | |
raise ValueError( | |
f"eps must be greater than or equal to 0. Got {eps} instead." | |
) | |
possible_plot_methods = ("contourf", "contour", "pcolormesh") | |
if plot_method not in possible_plot_methods: | |
available_methods = ", ".join(possible_plot_methods) | |
raise ValueError( | |
f"plot_method must be one of {available_methods}. " | |
f"Got {plot_method} instead." | |
) | |
x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1) | |
x0_min, x0_max = x0.min() - eps, x0.max() + eps | |
x1_min, x1_max = x1.min() - eps, x1.max() + eps | |
xx0, xx1 = np.meshgrid( | |
np.linspace(x0_min, x0_max, grid_resolution), | |
np.linspace(x1_min, x1_max, grid_resolution), | |
) | |
if hasattr(X, "iloc"): | |
# we need to preserve the feature names and therefore get an empty dataframe | |
X_grid = X.iloc[[], :].copy() | |
X_grid.iloc[:, 0] = xx0.ravel() | |
X_grid.iloc[:, 1] = xx1.ravel() | |
else: | |
X_grid = np.c_[xx0.ravel(), xx1.ravel()] | |
pred_func = _check_boundary_response_method(estimator, response_method) | |
response = pred_func(X_grid) | |
# convert classes predictions into integers | |
if pred_func.__name__ == "predict" and hasattr(estimator, "classes_"): | |
encoder = LabelEncoder() | |
encoder.classes_ = estimator.classes_ | |
response = encoder.transform(response) | |
if response.ndim != 1: | |
if is_regressor(estimator): | |
raise ValueError("Multi-output regressors are not supported") | |
# TODO: Support pos_label | |
response = response[:, 1] | |
if xlabel is None: | |
xlabel = X.columns[0] if hasattr(X, "columns") else "" | |
if ylabel is None: | |
ylabel = X.columns[1] if hasattr(X, "columns") else "" | |
display = DecisionBoundaryDisplay( | |
xx0=xx0, | |
xx1=xx1, | |
response=response.reshape(xx0.shape), | |
xlabel=xlabel, | |
ylabel=ylabel, | |
) | |
return display.plot(ax=ax, plot_method=plot_method, **kwargs) |