import gradio as gr import torchaudio from audiocraft.models import AudioGen from audiocraft.data.audio import audio_write model = AudioGen.get_pretrained('facebook/audiogen-medium') def infer(prompt): model.set_generation_params(duration=5) # generate 5 seconds. descriptions = [prompt] wav = model.generate(descriptions) # generates 3 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True) return "0.wav" gr.Interface( fn = infer, inputs = gr.Textbox(), outputs = gr.Audio() ).launch()