Tahani1 commited on
Commit
e8f88aa
·
verified ·
1 Parent(s): 6cae762

Upload PricesHousesModel1.py.txt

Browse files
Files changed (1) hide show
  1. PricesHousesModel1.py.txt +37 -0
PricesHousesModel1.py.txt ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import joblib
3
+ import gradio as gr # ✅ استيراد Gradio بدون `!pip install`
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ # تحميل النموذج والبيانات المسبقة
7
+ model_filename = "knn_house_model.pkl"
8
+ try:
9
+ model_path = hf_hub_download(repo_id="Tahani1/Houses-Prices-Prediction", filename=model_filename)
10
+ except Exception as e:
11
+ print(f"Error downloading '{model_filename}' from Hugging Face Hub: {e}")
12
+ raise
13
+
14
+ # تحميل الأدوات المساعدة
15
+ scaler = joblib.load(hf_hub_download(repo_id="Tahani1/Houses-Prices-Prediction", filename="scaler.pkl"))
16
+ label_encoder = joblib.load(hf_hub_download(repo_id="Tahani1/Houses-Prices-Prediction", filename="label_encoder.pkl"))
17
+
18
+ # دالة التنبؤ بالسعر
19
+ def predict_price(num_rooms, distance, country, build_quality):
20
+ country_encoded = label_encoder.transform([country])[0]
21
+ features = np.array([[num_rooms, distance, country_encoded, build_quality]])
22
+ features_scaled = scaler.transform(features)
23
+ predicted_price = model.predict(features_scaled)[0]
24
+ return f"Predicted House Price: ${predicted_price:,.2f}"
25
+
26
+ # واجهة Gradio
27
+ inputs = [
28
+ gr.Number(label="Number of Rooms"),
29
+ gr.Number(label="Distance to Center (km)"),
30
+ gr.Dropdown(label="Country", choices=label_encoder.classes_.tolist()),
31
+ gr.Slider(minimum=1, maximum=10, label="Build Quality")
32
+ ]
33
+
34
+ outputs = gr.Textbox(label="Prediction Result")
35
+
36
+ app = gr.Interface(fn=predict_price, inputs=inputs, outputs=outputs, title="House Price Prediction")
37
+ app.launch()