TangRain's picture
update pipeline for model loading
4f1f8e0
raw
history blame
16.1 kB
import os
import torch
import librosa
import numpy as np
import gradio as gr
import pyopenjtalk
from util import preprocess_input, postprocess_phn, get_tokenizer, load_pitch_dict, get_pinyin
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.svs_inference import SingingGenerate
singer_embeddings = {
"Model①(Chinese)-zh": {
"singer1 (male)": 1,
"singer2 (female)": 12,
"singer3 (male)": 23,
"singer4 (female)": 29,
"singer5 (male)": 18,
"singer6 (female)": 8,
"singer7 (male)": 25,
"singer8 (female)": 5,
"singer9 (male)": 10,
"singer10 (female)": 15,
},
"Model②(Multilingual)-zh": {
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
"singer6 (female)": "resource/singer/singer_embedding_itako.npy",
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
},
"Model②(Multilingual)-jp": {
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
"singer6 (female)": "resource/singer/singer_embedding_itako.npy",
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
}
}
model_dict = {
"Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain",
"Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
"Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
}
total_singers = list(singer_embeddings["Model②(Multilingual)-zh"].keys())
langs = {
"zh": 2,
"jp": 1,
}
predictor = torch.hub.load("South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True)
exist_model = "Null"
svs = None
def gen_song(model_name, spk, texts, durs, pitchs):
fs = 44100
tempo = 120
lang = model_name.split("-")[-1]
PRETRAIN_MODEL = model_dict[model_name]
if texts is None:
return (fs, np.array([0.0])), "Error: No Text provided!"
if durs is None:
return (fs, np.array([0.0])), "Error: No Dur provided!"
if pitchs is None:
return (fs, np.array([0.0])), "Error: No Pitch provided!"
# preprocess
if lang == "zh":
texts = preprocess_input(texts, "")
text_list = get_pinyin(texts)
elif lang == "jp":
texts = preprocess_input(texts, " ")
text_list = texts.strip().split()
durs = preprocess_input(durs, " ")
dur_list = durs.strip().split()
pitchs = preprocess_input(pitchs, " ")
pitch_list = pitchs.strip().split()
if len(text_list) != len(dur_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!"
if len(text_list) != len(pitch_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!"
## text to phoneme
tokenizer = get_tokenizer(model_name, lang)
sybs = []
for text in text_list:
if text == "AP" or text == "SP":
rev = [text]
elif text == "-" or text == "——":
rev = [text]
else:
rev = tokenizer(text)
if rev == False:
return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
rev = postprocess_phn(rev, model_name, lang)
phns = "_".join(rev)
sybs.append(phns)
pitch_dict = load_pitch_dict()
labels = []
notes = []
st = 0
pre_phn = ""
for phns, dur, pitch in zip(sybs, dur_list, pitch_list):
if phns == "-" or phns == "——":
phns = pre_phn
if pitch not in pitch_dict:
return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!"
pitch = pitch_dict[pitch]
phn_list = phns.split("_")
lyric = "".join(phn_list)
dur = float(dur)
note = [st, st + dur, lyric, pitch, phns]
st += dur
notes.append(note)
for phn in phn_list:
labels.append(phn)
pre_phn = labels[-1]
phns_str = " ".join(labels)
batch = {
"score": (
int(tempo),
notes,
),
"text": phns_str,
}
print(batch)
# return (fs, np.array([0.0])), "success!"
# Infer
global exist_model
global svs
if exist_model == "Null" or exist_model != model_name:
device = "cpu"
# device = "cuda" if torch.cuda.is_available() else "cpu"
d = ModelDownloader()
pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL)
svs = SingingGenerate(
train_config = pretrain_downloaded["train_config"],
model_file = pretrain_downloaded["model_file"],
device = device
)
exist_model = model_name
if model_name == "Model①(Chinese)-zh":
sid = np.array([singer_embeddings[model_name][spk]])
output_dict = svs(batch, sids=sid)
else:
lid = np.array([langs[lang]])
spk_embed = np.load(singer_embeddings[model_name][spk])
output_dict = svs(batch, lids=lid, spembs=spk_embed)
wav_info = output_dict["wav"].cpu().numpy()
# mos prediction with sr=16k
global predictor
wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000)
wav_mos = torch.from_numpy(wav_mos).unsqueeze(0)
len_mos = torch.tensor([wav_mos.shape[1]])
score = predictor(wav_mos, len_mos)
return (fs, wav_info), "success!", round(score.item(), 2)
# SP: silence, AP: aspirate.
examples = [
["Model①(Chinese)-zh", "singer1 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0"],
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], # midi note
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C#4 D#4 D#4 D#4 rest D#4 B3 rest\nB3 B3 rest B3 B3 E4 rest"], # up 1 key
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 大 地 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], # lyrics
["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"],
["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.66 0.58 0.27 0.3 0.97\n0.48 0.36 0.69 0.3 0.53 0.56 1.27 0.89", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], # double duration
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP\n你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34\n0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0\n63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], # long
["Model①(Chinese)-zh", "singer3 (male)", "修 炼 爱 情 的 心 酸 SP AP", "0.42 0.21 0.19 0.28 0.22 0.33 1.53 0.1 0.29", "68 70 68 66 63 68 68 0 0"],
["Model①(Chinese)-zh", "singer3 (male)", "学 会 放 好 以 前 的 渴 望 SP AP", "0.3 0.22 0.29 0.27 0.25 0.44 0.54 0.29 1.03 0.08 0.39", "68 70 68 66 61 68 68 65 66 0 0"],
["Model①(Chinese)-zh", "singer3 (male)", "SP 我 不 - 是 一 定 要 你 回 - 来 SP", "0.37 0.45 0.47 0.17 0.52 0.28 0.46 0.31 0.44 0.45 0.2 2.54 0.19", "0 51 60 61 59 59 57 57 59 60 61 59 0"], # slur
["Model①(Chinese)-zh", "singer4 (female)", "AP 我 多 想 再 见 你\n哪 怕 匆 - 匆 一 AP 眼 就 别 离 AP", "0.13 0.24 0.68 0.78 0.86 0.4 0.94 0.54 0.3 0.56 0.16 0.86 0.26 0.22 0.28 0.78 0.68 1.5 0.32", "0 57 66 63 63 63 63 60 61 61 63 66 66 0 61 61 59 58 0"],
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "60 60 60 56 56 56 55 55 55 53 56"],
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "62 62 62 58 58 58 57 57 57 55 58"], # pitch
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "1.2 0.6 0.6 0.6 0.6 1.2 1.2 0.6 0.6 1.2 0.45", "60 60 60 56 56 56 55 55 55 53 56"], # double dur
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.3 0.15 0.15 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.11", "60 60 60 56 56 56 55 55 55 53 56"], # half dur
["Model②(Multilingual)-jp", "singer8 (female)", "きっ と と べ ば そ ら ま で と ど く AP", "0.39 2.76 0.2 0.2 0.39 0.39 0.2 0.2 0.39 0.2 0.2 0.59 1.08", "64 71 68 69 71 71 69 68 66 68 69 68 0"],
["Model②(Multilingual)-jp", "singer8 (female)", "じゃ の め で お む か え う れ し い な", "0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.65", "60 60 60 62 64 67 69 69 64 64 64 62 60"],
["Model②(Multilingual)-jp", "singer10 (female)", "お と め わ ら い か ふぁ い や ら い か ん な い す ぶ ろ うぃ ん ぶ ろ うぃ ん い ん ざ うぃ ん", "0.15 0.15 0.15 0.15 0.3 0.15 0.3 0.15 0.15 0.3 0.07 0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.45 0.07 0.07 0.07 0.38 0.07 0.07 0.15 0.15 0.3 0.15 0.15", "67 67 67 67 67 67 69 67 67 69 67 67 64 64 64 64 64 64 62 64 64 62 62 64 64 62 62 59 59 59"],
]
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 align="center"> Demo of Singing Voice Synthesis in Muskits-ESPnet </h1>
<div style="font-size: 20px;">
This is the demo page of our toolkit <a href="https://arxiv.org/abs/2409.07226"><b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm</b></a>.
Singing Voice Synthesis (SVS) takes a music score as input and generates singing vocal with the voice of a specific singer.
Music score usually includes lyrics, as well as duration and pitch of each word in lyrics,
<h2>How to use:</h2>
<ol>
<li><b>Choose Model-Language</b>:
<ul>
<li>"zh" indicates lyrics input in Chinese, and "jp" indicates lyrics input in Japanese.</li>
<li>For example, "Model②(Mulitlingual)-zh" means model "Model②(Multilingual)" with lyrics input in Chinese.</li>
</ul>
</li>
<li><b>[Optional] Choose Singer</b>: Choose one singer you like from the drop-down list.</li>
<li><b>Input lyrics</b>:
<ul>
<li>Lyrics use Chinese characters when the language is 'zh' and hiragana when the language is 'jp'.</li>
<li>Special characters such as 'AP' (breath), 'SP' (silence), and '-' (slur, only for Chinese lyrics) can also be used.</li>
<li>Lyrics sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks.</li>
</ul>
</li>
<li><b>Input durations</b>:
<ul>
<li>Durations use float number as input.</li>
<li>Length of duration sequence should <b>be same as lyric sequence</b>, with each duration corresponding to the respective lyric.</li>
<li>Durations sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks.</li>
</ul>
</li>
<li><b>Input pitches</b>:
<ul>
<li>Pitches use MIDI note or MIDI note number as input. Specially, "69" in MIDI note number represents "A4" in MIDI note.</li>
<li>Length of pitch sequence should <b>be same as lyric sequence</b>, with each pitch corresponding to the respective lyric.</li>
<li>Pitches sequence should be separated by either a space (' ') or a newline ('\\n'), without the quotation marks.</li>
</ul>
</li>
<li><b>Hit "Generate" and listen to the result!</b></li>
</ol>
</div>
<h2>Notice:</h2>
<ul>
<li> Plenty of exmpales are provided. </li>
<li> Extreme values may result in suboptimal generation quality! </li>
</ul>
"""
)
# Row-1
with gr.Row():
with gr.Column(variant="panel"):
model_name = gr.Radio(
label="Model-Language",
choices=[
"Model①(Chinese)-zh",
"Model②(Multilingual)-zh",
"Model②(Multilingual)-jp",
],
)
with gr.Column(variant="panel"):
singer = gr.Dropdown(
label="Singer",
choices=total_singers,
)
# def set_model(model_name_str: str):
# """
# gets value from `model_name`. either
# uses cached list of speakers for the given model name
# or loads the addon and checks what are the speakers.
# """
# speakers = list(singer_embeddings[model_name_str].keys())
# value = speakers[0]
# return gr.update(
# choices=speakers, value=value, visible=True, interactive=True
# )
# model_name.change(set_model, inputs=model_name, outputs=singer)
# Row-2
with gr.Row():
with gr.Column(variant="panel"):
lyrics = gr.Textbox(label="Lyrics")
duration = gr.Textbox(label="Duration")
pitch = gr.Textbox(label="Pitch")
generate = gr.Button("Generate")
with gr.Column(variant="panel"):
gened_song = gr.Audio(label="Generated Song", type="numpy")
run_status = gr.Textbox(label="Running Status")
pred_mos = gr.Textbox(label=" Pseudo MOS")
gr.Examples(
examples=examples,
inputs=[model_name, singer, lyrics, duration, pitch],
outputs=[singer],
label="Examples",
examples_per_page=20,
)
gr.Markdown("""
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> |
<a href="https://github.com/espnet/espnet">espnet</a> |
<a href="https://huggingface.co/espnet/aceopencpop_svs_visinger2_40singer_pretrain">Model①(Chinese)</a> |
<a href="https://huggingface.co/espnet/mixdata_svs_visinger2_spkembed_lang_pretrained">Model②(Multilingual)</a></p>
</div>
"""
)
generate.click(
fn=gen_song,
inputs=[model_name, singer, lyrics, duration, pitch],
outputs=[gened_song, run_status, pred_mos],
)
demo.launch()