import gradio as gr import requests from bs4 import BeautifulSoup import pandas as pd from transformers import pipeline import plotly.express as px from datetime import datetime, timedelta file_path = '/home/user/app/Top 2000 Valued Companies with Ticker Symbols.xlsx' companies_df = pd.read_excel(file_path) def get_stock_symbol(company_name): match = companies_df[companies_df['Name'].str.contains(company_name, case=False, na=False)] if not match.empty: return match.iloc[0]['Symbol'] return None sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis") def encode_special_characters(text): encoded_text = '' special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'} for char in text.lower(): encoded_text += special_characters.get(char, char) return encoded_text def fetch_news(query, num_articles=10): encoded_query = encode_special_characters(query) url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}" try: response = requests.get(url) response.raise_for_status() except requests.RequestException as e: print(f"Error fetching news: {e}") return pd.DataFrame() soup = BeautifulSoup(response.text, 'html.parser') articles = soup.find_all('article') news_data = [] for article in articles[:num_articles]: link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/") text_parts = article.get_text(separator='\n').split('\n') news_data.append({ 'Title': text_parts[2] if len(text_parts) > 2 else 'Missing', 'Source': text_parts[0] if len(text_parts) > 0 else 'Missing', 'Time': text_parts[3] if len(text_parts) > 3 else 'Missing', 'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing', 'Link': link }) return pd.DataFrame(news_data) def analyze_sentiment(text): result = sentiment_model(text)[0] return result['label'], result['score'] def fetch_stock_data(symbol): url = "https://alpha-vantage.p.rapidapi.com/query" querystring = {"function":"TIME_SERIES_DAILY", "symbol":symbol, "outputsize":"compact", "datatype":"json"} headers = { "x-rapidapi-key": "e078dae417mshb13ddc2d8149768p1608e9jsn888ce49e8554", "x-rapidapi-host": "alpha-vantage.p.rapidapi.com" } response = requests.get(url, headers=headers, params=querystring) data = response.json() if "Time Series (Daily)" not in data: return pd.DataFrame() stock_data = pd.DataFrame(data["Time Series (Daily)"]).T stock_data.index = pd.to_datetime(stock_data.index) stock_data.columns = ["Open", "High", "Low", "Close", "Volume"] return stock_data def news_and_analysis(query): news_df = fetch_news(query) if news_df.empty: return "No news articles found.", None, None news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment)) sentiment_fig = px.bar( news_df, x='Time', y='Sentiment_Score', color='Sentiment', color_discrete_map={'positive': 'green', 'neutral': 'gray', 'negative': 'red'}, title='News Sentiment Over Time', labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'} ) stock_symbol = get_stock_symbol(query) if stock_symbol: stock_data = fetch_stock_data(stock_symbol) if not stock_data.empty: stock_fig = px.line(stock_data, x=stock_data.index, y='Close', title=f'{stock_symbol} Stock Price') return news_df, sentiment_fig, stock_fig return news_df, sentiment_fig, None with gr.Blocks() as demo: gr.Markdown( """ # Financial News Sentiment Analysis Analyze the sentiment of news articles related to financial topics or companies. Enter a topic or company name to get started. """ ) with gr.Row(): with gr.Column(): topic = gr.Textbox(label="Enter a financial topic or company name", placeholder="e.g., Apple Inc.") analyze_btn = gr.Button(value="Analyze") with gr.Column(): news_output = gr.DataFrame(label="News and Sentiment Analysis") sentiment_plot = gr.Plot(label="Sentiment Analysis") stock_plot = gr.Plot(label="Stock Price Movement") analyze_btn.click( news_and_analysis, inputs=[topic], outputs=[news_output, sentiment_plot, stock_plot] ) if __name__ == "__main__": demo.launch()