sr-snw-ann / app.py
Tanor's picture
better description
0b34b06
raw
history blame
1.23 kB
import gradio as gr
from sentiwordnet_calculator import SentimentPipeline
pipe = SentimentPipeline("Tanor/SRGPTSENTPOS2", "Tanor/SRGPTSENTNEG2")
def calculate(text):
result = pipe(text)
# Visual representation
visual = result
# Numerical representation
numerical = {key: round(value, 2) for key, value in result.items()}
# Create a formatted string
numerical_str = ", ".join(f"{key}: {value}" for key, value in numerical.items())
return visual, numerical_str
iface = gr.Interface(
fn=calculate,
inputs=gr.inputs.Textbox(lines=5, placeholder="Enter your text here..."),
outputs=[gr.outputs.Label(num_top_classes=3), "text"],
title="Sentiment Analysis for Serbian",
description="""
This tool performs sentiment analysis on the input text using a model trained on Serbian dictionary definitions.
The model was initially pretrained on the [sr-gpt2-large model by Mihailo Škorić](https://huggingface.co/JeRTeh/sr-gpt2-large),
then fine-tuned on selected definitions from the Serbian WordNet. Please limit the input to 300 tokens.
The outputs represent the Positive (POS), Negative (NEG), and Objective (OBJ) sentiment scores.
"""
)
iface.launch()