File size: 4,131 Bytes
9329646 2367075 e0a30e4 b0a72d6 2367075 9329646 2367075 cb097f0 9329646 ecb17e3 9329646 cb097f0 9329646 ecb17e3 9329646 ecb17e3 9329646 cb097f0 9329646 cb097f0 9329646 cb097f0 9329646 cb097f0 9329646 cb097f0 9329646 cb097f0 9329646 8a0c0b2 ecb17e3 9329646 d3c0fe5 9329646 2367075 cb097f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from huggingface_hub import HfApi, HfFileSystem
import re
from tqdm import tqdm
import concurrent.futures
import gradio as gr
import datetime
import pandas as pd
import os
import threading
import time
HF_TOKEN = os.getenv('HF_TOKEN')
api = HfApi()
fs = HfFileSystem()
def restart_space():
time.sleep(36000)
api.restart_space(repo_id="Tanvir1337/thebloke-quantized-models", token=HF_TOKEN)
text = f"""
π― The Leaderboard aims to track TheBloke's quantized models.
## π Type Of Models
- GGUF
- GPTQ
- AWQ
- GGML
## π οΈ Backend
The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
## π Searching
You can search for author or a spesific model using the search bar.
## β Last Update
This space is last updated in **{str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"))}**.
## π Important Note
This space potentially includes incorrectly quantized models for a model.
If you find any incorrectly quantized model, please report it to me.
"""
quant_models = [i.__dict__['id'] for i in api.list_models(author="TheBloke") if "GPTQ" in i.__dict__['id'] or "GGUF" in i.__dict__['id'] or "AWQ" in i.__dict__['id'] or "GGML" in i.__dict__['id']]
pattern = r'\(https://huggingface\.co/([^/]+)/([^/]+)\)'
liste = {}
def process_model(i, pattern, liste):
text = fs.read_text(i + "/README.md")
matches = re.search(pattern, text)
if matches:
author = matches.group(1)
model_name = matches.group(2)
full_id = (author + "/" + model_name).split(")")[0]
try:
liste[full_id].append(i)
except KeyError:
liste[full_id] = [i]
num_threads = 64
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in quant_models:
future = executor.submit(process_model, i, pattern, liste)
futures.append(future)
concurrent.futures.wait(futures)
authors, models, gptq, gguf, awq, ggml = [], [], [], [], [], []
for model, values in liste.items():
models.append(model)
gptq_value, gguf_value, awq_value, ggml_value = None, None, None, None
for value in values:
if "-GPTQ" in value:
gptq_value = value
elif "-GGUF" in value:
gguf_value = value
elif "-AWQ" in value:
awq_value = value
elif "-GGML" in value:
ggml_value = value
authors.append(model.split('/')[0])
gguf.append(gguf_value)
gptq.append(gptq_value)
awq.append(awq_value)
ggml.append(ggml_value)
df = pd.DataFrame({'π€ Author Name': authors, 'π€ Model Name': models, 'π₯ GGUF': gguf, 'π GPTQ': gptq, 'π€·ββοΈ AWQ': awq, 'π GGML': ggml})
def search(search_text):
if not search_text:
return df
if len(search_text.split('/'))>1:
return df[df['π€ Model Name'] == clickable(search_text)]
else:
return df[df['π€ Author Name'] == clickable(search_text)]
def clickable(x):
return None if not x else f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
def to_clickable(df):
for column in list(df.columns):
df[column] = df[column].apply(lambda x: clickable(x))
return df
with gr.Blocks() as demo:
gr.Markdown("""<center><img src = "https://cdn-avatars.huggingface.co/v1/production/uploads/6426d3f3a7723d62b53c259b/tvPikpAzKTKGN5wrpadOJ.jpeg" width=200 height=200></center>""")
gr.Markdown("""<h1 align="center" id="space-title">The Bloke Quantized Models</h1>""")
gr.Markdown(text)
with gr.Column(min_width=320):
search_bar = gr.Textbox(placeholder="π Search for a author or a specific model", show_label=False)
df_clickable = to_clickable(df)
gr_df = gr.Dataframe(df_clickable, interactive=False, datatype=["markdown"]*len(df.columns))
search_bar.submit(fn=search, inputs=search_bar, outputs=gr_df)
threading.Thread(target=restart_space).start()
demo.launch()
|