Tawkat commited on
Commit
8b08b58
·
verified ·
1 Parent(s): f91f759

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -73
app.py CHANGED
@@ -1,90 +1,124 @@
1
- from huggingface_hub import InferenceClient
 
 
 
2
  import gradio as gr
 
 
 
3
 
4
- client = InferenceClient(
5
- "Tawkat/qlora-nursegpt-nclex-mis-DT-v1"
6
- )
7
 
8
 
9
- def format_prompt(message, history):
10
- prompt = "<s> You are a helpful chatbot specialized in medical knowledge.\n"
11
- for user_prompt, bot_response in history:
12
- prompt += f"[INST] {user_prompt} [/INST]"
13
- prompt += f" {bot_response}</s> "
14
- prompt += f"[INST] {message} [/INST]"
15
- return prompt
16
 
 
 
17
  def generate(
18
- prompt, history, temperature=0.9, max_new_tokens=1000, top_p=0.95, repetition_penalty=1.0,
19
- ):
20
- temperature = float(temperature)
21
- if temperature < 1e-2:
22
- temperature = 1e-2
23
- top_p = float(top_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
25
  generate_kwargs = dict(
26
- temperature=temperature,
 
27
  max_new_tokens=max_new_tokens,
 
28
  top_p=top_p,
 
 
 
29
  repetition_penalty=repetition_penalty,
30
- do_sample=True,
31
- seed=42,
32
  )
 
 
33
 
34
- formatted_prompt = format_prompt(prompt, history)
35
-
36
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
37
- output = ""
38
 
39
- for response in stream:
40
- output += response.token.text
41
- yield output
42
- return output
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- additional_inputs=[
46
- gr.Slider(
47
- label="Temperature",
48
- value=0.9,
49
- minimum=0.0,
50
- maximum=1.0,
51
- step=0.05,
52
- interactive=True,
53
- info="Higher values produce more diverse outputs",
54
- ),
55
- gr.Slider(
56
- label="Max new tokens",
57
- value=1000,
58
- minimum=0,
59
- maximum=1048,
60
- step=64,
61
- interactive=True,
62
- info="The maximum numbers of new tokens",
63
- ),
64
- gr.Slider(
65
- label="Top-p (nucleus sampling)",
66
- value=0.90,
67
- minimum=0.0,
68
- maximum=1,
69
- step=0.05,
70
- interactive=True,
71
- info="Higher values sample more low-probability tokens",
72
- ),
73
- gr.Slider(
74
- label="Repetition penalty",
75
- value=1.2,
76
- minimum=1.0,
77
- maximum=2.0,
78
- step=0.05,
79
- interactive=True,
80
- info="Penalize repeated tokens",
81
- )
82
- ]
83
-
84
 
85
- gr.ChatInterface(
86
- fn=generate,
87
- chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
88
- additional_inputs=additional_inputs,
89
- title="""Mistral 7B"""
90
- ).launch(show_api=False)
 
1
+ import os
2
+ from threading import Thread
3
+ from typing import Iterator
4
+
5
  import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
 
10
+ MAX_MAX_NEW_TOKENS = 2048
11
+ DEFAULT_MAX_NEW_TOKENS = 1024
12
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
13
 
14
 
15
+ #if torch.cuda.is_available():
16
+ model_id = "meta-llama/Llama-2-7b-chat-hf"
17
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
18
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
19
+ tokenizer.use_default_system_prompt = False
 
 
20
 
21
+
22
+ @spaces.GPU
23
  def generate(
24
+ message: str,
25
+ chat_history: list[tuple[str, str]],
26
+ system_prompt: str,
27
+ max_new_tokens: int = 1024,
28
+ temperature: float = 0.6,
29
+ top_p: float = 0.9,
30
+ top_k: int = 50,
31
+ repetition_penalty: float = 1.2,
32
+ ) -> Iterator[str]:
33
+ conversation = []
34
+ if system_prompt:
35
+ conversation.append({"role": "system", "content": system_prompt})
36
+ for user, assistant in chat_history:
37
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
38
+ conversation.append({"role": "user", "content": message})
39
+
40
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
41
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
42
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
43
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
44
+ input_ids = input_ids.to(model.device)
45
 
46
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
47
  generate_kwargs = dict(
48
+ {"input_ids": input_ids},
49
+ streamer=streamer,
50
  max_new_tokens=max_new_tokens,
51
+ do_sample=True,
52
  top_p=top_p,
53
+ top_k=top_k,
54
+ temperature=temperature,
55
+ num_beams=1,
56
  repetition_penalty=repetition_penalty,
 
 
57
  )
58
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
59
+ t.start()
60
 
61
+ outputs = []
62
+ for text in streamer:
63
+ outputs.append(text)
64
+ yield "".join(outputs)
65
 
 
 
 
 
66
 
67
+ chat_interface = gr.ChatInterface(
68
+ fn=generate,
69
+ additional_inputs=[
70
+ gr.Textbox(label="System prompt", lines=6),
71
+ gr.Slider(
72
+ label="Max new tokens",
73
+ minimum=1,
74
+ maximum=MAX_MAX_NEW_TOKENS,
75
+ step=1,
76
+ value=DEFAULT_MAX_NEW_TOKENS,
77
+ ),
78
+ gr.Slider(
79
+ label="Temperature",
80
+ minimum=0.1,
81
+ maximum=4.0,
82
+ step=0.1,
83
+ value=0.6,
84
+ ),
85
+ gr.Slider(
86
+ label="Top-p (nucleus sampling)",
87
+ minimum=0.05,
88
+ maximum=1.0,
89
+ step=0.05,
90
+ value=0.9,
91
+ ),
92
+ gr.Slider(
93
+ label="Top-k",
94
+ minimum=1,
95
+ maximum=1000,
96
+ step=1,
97
+ value=50,
98
+ ),
99
+ gr.Slider(
100
+ label="Repetition penalty",
101
+ minimum=1.0,
102
+ maximum=2.0,
103
+ step=0.05,
104
+ value=1.2,
105
+ ),
106
+ ],
107
+ stop_btn=None,
108
+ examples=[
109
+ ["Hello there! How are you doing?"],
110
+ ["Can you explain briefly to me what is the Python programming language?"],
111
+ ["Explain the plot of Cinderella in a sentence."],
112
+ ["How many hours does it take a man to eat a Helicopter?"],
113
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
114
+ ],
115
+ )
116
 
117
+ with gr.Blocks(css="style.css") as demo:
118
+ gr.Markdown(DESCRIPTION)
119
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
120
+ chat_interface.render()
121
+ gr.Markdown(LICENSE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
+ if __name__ == "__main__":
124
+ demo.queue(max_size=20).launch()