File size: 9,412 Bytes
c8c8070
558e9ac
 
c8c8070
 
 
72553ca
3a30fdd
8e7ba9f
558e9ac
 
 
 
 
f0321ce
c8c8070
34ab564
 
 
 
 
 
 
 
 
 
 
 
 
 
72553ca
c8c8070
72553ca
 
 
 
 
 
 
 
c8c8070
 
 
72553ca
 
c8c8070
 
bca8716
c8c8070
34ab564
 
72553ca
 
 
 
 
 
 
 
34ab564
72553ca
 
 
 
c8c8070
72553ca
 
 
 
 
 
 
 
c8c8070
 
72553ca
c8c8070
 
 
 
72553ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca8716
c8c8070
 
 
72553ca
c8c8070
72553ca
8e7ba9f
cac0839
c8c8070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72553ca
 
 
 
56d3094
c8c8070
 
 
 
 
 
 
8e7ba9f
c8c8070
 
 
 
 
 
 
 
 
 
56d3094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba091cb
 
56d3094
ba091cb
72553ca
c8c8070
72553ca
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import os
import sys
import json 
import requests

MODEL = "gpt-4"
API_URL = os.getenv("API_URL")
DISABLED = os.getenv("DISABLED") == 'True'
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

def exception_handler(exception_type, exception, traceback):
    print("%s: %s" % (exception_type.__name__, exception))
sys.excepthook = exception_handler
sys.tracebacklimit = 0

#https://github.com/gradio-app/gradio/issues/3531#issuecomment-1484029099
def parse_codeblock(text):
    lines = text.split("\n")
    for i, line in enumerate(lines):
        if "```" in line:
            if line != "```":
                lines[i] = f'<pre><code class="{lines[i][3:]}">'
            else:
                lines[i] = '</code></pre>'
        else:
            if i > 0:
                lines[i] = "<br/>" + line.replace("<", "&lt;").replace(">", "&gt;")
    return "".join(lines)
    
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
    payload = {
        "model": MODEL,
        "messages": [{"role": "user", "content": f"{inputs}"}],
        "temperature" : 1.0,
        "top_p":1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
    }

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {OPENAI_API_KEY}"
    }

    # print(f"chat_counter - {chat_counter}")
    if chat_counter != 0 :
        messages = []
        for i, data in enumerate(history):
            if i % 2 == 0:
                role = 'user'
            else:
                role = 'assistant'
            message = {}
            message["role"] = role
            message["content"] = data
            messages.append(message)
        
        message = {}
        message["role"] = "user" 
        message["content"] = inputs
        messages.append(message)
        payload = {
            "model": MODEL,
            "messages": messages,
            "temperature" : temperature,
            "top_p": top_p,
            "n" : 1,
            "stream": True,
            "presence_penalty":0,
            "frequency_penalty":0,
        }

    chat_counter += 1

    history.append(inputs)
    token_counter = 0 
    partial_words = "" 
    counter = 0

    try:
        # make a POST request to the API endpoint using the requests.post method, passing in stream=True
        response = requests.post(API_URL, headers=headers, json=payload, stream=True)
        response_code = f"{response}"
        #if response_code.strip() != "<Response [200]>":
        #    #print(f"response code - {response}")
        #    raise Exception(f"Sorry, hitting rate limit. Please try again later. {response}")
        
        for chunk in response.iter_lines():
            #Skipping first chunk
            if counter == 0:
                counter += 1
                continue
                #counter+=1
            # check whether each line is non-empty
            if chunk.decode() :
                chunk = chunk.decode()
                # decode each line as response data is in bytes
                if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
                    partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
                    if token_counter == 0:
                        history.append(" " + partial_words)
                    else:
                        history[-1] = partial_words
                    token_counter += 1
                    yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False)  # resembles {chatbot: chat, state: history}  
    except Exception as e:
        print (f'error found: {e}')
    yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True)
    print(json.dumps({"chat_counter": chat_counter, "payload": payload, "partial_words": partial_words, "token_counter": token_counter, "counter": counter}))
                   

def reset_textbox():
    return gr.update(value='', interactive=False), gr.update(interactive=False)

title = """<h1 align="center">GPT4 Chatbot</h1>"""
if DISABLED:
    title = """<h1 align="center" style="color:red">This app has reached OpenAI's usage limit. We are currently requesting an increase in our quota. Please check back in a few days.</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-4 LLM.
"""

theme = gr.themes.Default(primary_hue="green")                

with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}""",
              theme=theme) as demo:
    gr.HTML(title)
    #gr.HTML("""<h3 align="center">This app provides you full access to GPT4 (4096 token limit). You don't need any OPENAI API key.</h1>""")
    gr.HTML("""<h3 align="center" style="color: red;">If this app is too busy, consider trying our GPT-3.5 app, which has a much shorter queue time. Visit it below:<br/><a href="https://huggingface.co/spaces/yuntian-deng/ChatGPT">https://huggingface.co/spaces/yuntian-deng/ChatGPT</a></h3>""")

    #gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
    with gr.Column(elem_id = "col_container", visible=False) as main_block:
        #GPT4 API Key is provided by Huggingface 
        #openai_api_key = gr.Textbox(type='password', label="Enter only your GPT4 OpenAI API key here")
        chatbot = gr.Chatbot(elem_id='chatbot') #c
        inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
        state = gr.State([]) #s
        with gr.Row():
            with gr.Column(scale=7):
                b1 = gr.Button(visible=not DISABLED).style(full_width=True)
            with gr.Column(scale=3):
                server_status_code = gr.Textbox(label="Status code from OpenAI server", )
    
        #inputs, top_p, temperature, top_k, repetition_penalty
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
            #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
            chat_counter = gr.Number(value=0, visible=False, precision=0)
    
    with gr.Column(elem_id = "user_consent_container") as user_consent_block:
        # Get user consent
        with gr.Accordion("User Consent for Data Collection, Use, and Sharing", open=True):
            gr.HTML("""
            <div>
                <p>By using our app, which is powered by OpenAI's API, you acknowledge and agree to the following terms regarding the data you provide:</p>
                <ol>
                    <li><strong>Collection:</strong> We may collect information, including the inputs you type into our app and the outputs generated by OpenAI's API.</li>
                    <li><strong>Use:</strong> We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications.</li>
                    <li><strong>Sharing and Publication:</strong> Your data may be published, shared with third parties, or used for analysis and reporting purposes.</li>
                    <li><strong>Data Retention:</strong> We may retain your data for as long as necessary.</li>
                </ol>
                <p>By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app.</p>
            </div>
            """)
            accept_button = gr.Button("I Agree")

        def enable_inputs():
            return user_consent_block.update(visible=False), main_block.update(visible=True)

    accept_button.click(fn=enable_inputs, inputs=[], outputs=[user_consent_block, main_block], queue=False)

    inputs.submit(reset_textbox, [], [inputs, b1], queue=False)
    inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],)  #openai_api_key
    b1.click(reset_textbox, [], [inputs, b1], queue=False)
    b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],)  #openai_api_key
             
    demo.queue(max_size=20, concurrency_count=3, api_open=False).launch()