Spaces:
Paused
Paused
Commit
·
19b1be5
1
Parent(s):
712d19c
Massive update, added download and convert options.
Browse files- .idea/Inference-Server.iml +1 -0
- README.md +4 -0
- client/__init__.py +0 -0
- client/client.py +275 -0
- client/client_config.yaml +33 -0
- main/hf_downloader.py +97 -0
- main/main.py +3 -1
- main/routes.py +249 -196
.idea/Inference-Server.iml
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
<exclude-output />
|
5 |
<content url="file://$MODULE_DIR$">
|
6 |
<excludeFolder url="file://$MODULE_DIR$/myenv" />
|
|
|
7 |
</content>
|
8 |
<orderEntry type="inheritedJdk" />
|
9 |
<orderEntry type="sourceFolder" forTests="false" />
|
|
|
4 |
<exclude-output />
|
5 |
<content url="file://$MODULE_DIR$">
|
6 |
<excludeFolder url="file://$MODULE_DIR$/myenv" />
|
7 |
+
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
8 |
</content>
|
9 |
<orderEntry type="inheritedJdk" />
|
10 |
<orderEntry type="sourceFolder" forTests="false" />
|
README.md
CHANGED
@@ -24,4 +24,8 @@ folders
|
|
24 |
LLM-Engine
|
25 |
Main
|
26 |
main.py
|
|
|
|
|
|
|
|
|
27 |
```
|
|
|
24 |
LLM-Engine
|
25 |
Main
|
26 |
main.py
|
27 |
+
routes.py
|
28 |
+
checkpoints
|
29 |
+
meta
|
30 |
+
|
31 |
```
|
client/__init__.py
ADDED
File without changes
|
client/client.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import sseclient
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
import yaml
|
7 |
+
from typing import Optional
|
8 |
+
import os
|
9 |
+
|
10 |
+
from litgpt.scripts.convert_hf_checkpoint import convert_hf_checkpoint
|
11 |
+
from litgpt.scripts.download import download_from_hub
|
12 |
+
|
13 |
+
DEFAULT_CONFIG = {
|
14 |
+
'server': {'url': 'http://localhost:7860'},
|
15 |
+
'model': {
|
16 |
+
'name': 'Qwen2.5-Coder-7B-Instruct',
|
17 |
+
'download_location': 'huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated',
|
18 |
+
'folder_path': 'huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated',
|
19 |
+
'model_filename': 'model.safetensors'
|
20 |
+
}
|
21 |
+
}
|
22 |
+
|
23 |
+
def get_project_root(config: dict) -> Path:
|
24 |
+
client_dir = Path(__file__).parent
|
25 |
+
return (client_dir / config['project']['root_dir']).resolve()
|
26 |
+
|
27 |
+
def get_checkpoints_dir(config: dict) -> Path:
|
28 |
+
root = get_project_root(config)
|
29 |
+
return root / config['project']['checkpoints_dir']
|
30 |
+
|
31 |
+
class LLMClient:
|
32 |
+
def __init__(self, config: dict):
|
33 |
+
self.config = config
|
34 |
+
self.base_url = config['server']['url'].rstrip('/')
|
35 |
+
self.session = requests.Session()
|
36 |
+
self.checkpoints_dir = get_checkpoints_dir(config)
|
37 |
+
|
38 |
+
def download_model(
|
39 |
+
self,
|
40 |
+
repo_id: Optional[str] = None,
|
41 |
+
access_token: Optional[str] = os.getenv("HF_TOKEN"),
|
42 |
+
) -> None:
|
43 |
+
repo_id = repo_id or self.config['model']['folder_path']
|
44 |
+
|
45 |
+
print(f"\nDownloading model from: {repo_id}")
|
46 |
+
download_from_hub(
|
47 |
+
repo_id=repo_id,
|
48 |
+
model_name=self.config['model']['name'],
|
49 |
+
access_token=access_token,
|
50 |
+
tokenizer_only=False,
|
51 |
+
checkpoint_dir=self.checkpoints_dir
|
52 |
+
)
|
53 |
+
|
54 |
+
def convert_model(
|
55 |
+
self,
|
56 |
+
folder_path: Optional[str] = None,
|
57 |
+
model_name: Optional[str] = None,
|
58 |
+
) -> None:
|
59 |
+
"""Convert downloaded model to LitGPT format."""
|
60 |
+
folder_path = folder_path or self.config['model']['folder_path']
|
61 |
+
model_name = model_name or self.config['model']['name']
|
62 |
+
|
63 |
+
model_dir = self.checkpoints_dir / folder_path
|
64 |
+
print(f"\nConverting model in: {model_dir}")
|
65 |
+
print(f"Using model name: {model_name}")
|
66 |
+
|
67 |
+
try:
|
68 |
+
convert_hf_checkpoint(
|
69 |
+
checkpoint_dir=model_dir,
|
70 |
+
model_name=model_name
|
71 |
+
)
|
72 |
+
print("Conversion complete!")
|
73 |
+
except ValueError as e:
|
74 |
+
if "is not a supported config name" in str(e):
|
75 |
+
print(f"\nNote: Model '{model_name}' isn't in LitGPT's predefined configs.")
|
76 |
+
print("You may need to use the model's safetensors files directly.")
|
77 |
+
raise
|
78 |
+
|
79 |
+
def initialize_model(
|
80 |
+
self,
|
81 |
+
folder_path: Optional[str] = None,
|
82 |
+
mode: Optional[str] = None,
|
83 |
+
**kwargs
|
84 |
+
) -> dict:
|
85 |
+
"""Initialize a converted model using the standard initialize endpoint."""
|
86 |
+
url = f"{self.base_url}/initialize"
|
87 |
+
|
88 |
+
folder_path = folder_path or self.config['model']['folder_path']
|
89 |
+
mode = mode or self.config['hardware']['mode']
|
90 |
+
|
91 |
+
# Debug prints
|
92 |
+
print(f"\nDebug - Attempting to initialize model with:")
|
93 |
+
print(f"Model path: {folder_path}")
|
94 |
+
print(f"Mode: {mode}")
|
95 |
+
|
96 |
+
payload = {
|
97 |
+
"model_path": folder_path, # This is what the regular initialize endpoint expects
|
98 |
+
"mode": mode,
|
99 |
+
"precision": self.config['hardware'].get('precision'),
|
100 |
+
"quantize": self.config['hardware'].get('quantize'),
|
101 |
+
"gpu_count": self.config['hardware'].get('gpu_count', 'auto'),
|
102 |
+
**kwargs
|
103 |
+
}
|
104 |
+
|
105 |
+
response = self.session.post(url, json=payload)
|
106 |
+
response.raise_for_status()
|
107 |
+
return response.json()
|
108 |
+
|
109 |
+
def generate_stream(
|
110 |
+
self,
|
111 |
+
prompt: str,
|
112 |
+
max_new_tokens: Optional[int] = None,
|
113 |
+
temperature: Optional[float] = None,
|
114 |
+
top_k: Optional[int] = None,
|
115 |
+
top_p: Optional[float] = None
|
116 |
+
):
|
117 |
+
url = f"{self.base_url}/generate/stream"
|
118 |
+
|
119 |
+
gen_config = self.config.get('generation', {})
|
120 |
+
payload = {
|
121 |
+
"prompt": prompt,
|
122 |
+
"max_new_tokens": max_new_tokens or gen_config.get('max_new_tokens', 50),
|
123 |
+
"temperature": temperature or gen_config.get('temperature', 1.0),
|
124 |
+
"top_k": top_k or gen_config.get('top_k'),
|
125 |
+
"top_p": top_p or gen_config.get('top_p', 1.0)
|
126 |
+
}
|
127 |
+
|
128 |
+
response = self.session.post(url, json=payload, stream=True)
|
129 |
+
response.raise_for_status()
|
130 |
+
|
131 |
+
client = sseclient.SSEClient(response)
|
132 |
+
for event in client.events():
|
133 |
+
yield json.loads(event.data)
|
134 |
+
|
135 |
+
def clear_screen():
|
136 |
+
os.system('cls' if os.name == 'nt' else 'clear')
|
137 |
+
|
138 |
+
def load_config(config_path: str = "client_config.yaml") -> dict:
|
139 |
+
try:
|
140 |
+
with open(config_path, 'r') as f:
|
141 |
+
config = yaml.safe_load(f)
|
142 |
+
return config
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Warning: Could not load config file: {str(e)}")
|
145 |
+
print("Using default configuration.")
|
146 |
+
return DEFAULT_CONFIG
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def main():
|
151 |
+
config = load_config()
|
152 |
+
client = LLMClient(config)
|
153 |
+
|
154 |
+
while True:
|
155 |
+
clear_screen()
|
156 |
+
print("\nLLM Engine Client")
|
157 |
+
print("================")
|
158 |
+
print(f"Server: {client.base_url}")
|
159 |
+
print(f"Current Model: {config['model']['name']}")
|
160 |
+
print("\nOptions:")
|
161 |
+
print("1. Download Model")
|
162 |
+
print("2. Convert Model")
|
163 |
+
print("3. Initialize Model")
|
164 |
+
print("4. Generate Text (Streaming)")
|
165 |
+
print("5. Exit")
|
166 |
+
|
167 |
+
choice = input("\nEnter your choice (1-5): ").strip()
|
168 |
+
|
169 |
+
if choice == "1":
|
170 |
+
try:
|
171 |
+
print("\nDownload Model")
|
172 |
+
print("==============")
|
173 |
+
print(f"Default location: {config['model']['download_location']}")
|
174 |
+
if input("\nUse default? (Y/n): ").lower() != 'n':
|
175 |
+
repo_id = config['model']['download_location']
|
176 |
+
else:
|
177 |
+
repo_id = input("Enter download location: ").strip()
|
178 |
+
|
179 |
+
access_token = input("Enter HF access token (or press Enter to use HF_TOKEN env var): ").strip() or None
|
180 |
+
client.download_model(repo_id=repo_id, access_token=access_token)
|
181 |
+
print("\nModel downloaded successfully!")
|
182 |
+
input("\nPress Enter to continue...")
|
183 |
+
|
184 |
+
except Exception as e:
|
185 |
+
print(f"\nError: {str(e)}")
|
186 |
+
input("\nPress Enter to continue...")
|
187 |
+
|
188 |
+
elif choice == "2":
|
189 |
+
try:
|
190 |
+
print("\nConvert Model")
|
191 |
+
print("=============")
|
192 |
+
print(f"Default folder path: {config['model']['folder_path']}")
|
193 |
+
print(f"Default model name: {config['model']['name']}")
|
194 |
+
if input("\nUse defaults? (Y/n): ").lower() != 'n':
|
195 |
+
folder_path = config['model']['folder_path']
|
196 |
+
model_name = config['model']['name']
|
197 |
+
else:
|
198 |
+
folder_path = input("Enter folder path: ").strip()
|
199 |
+
model_name = input("Enter model name: ").strip()
|
200 |
+
|
201 |
+
client.convert_model(
|
202 |
+
folder_path=folder_path,
|
203 |
+
model_name=model_name
|
204 |
+
)
|
205 |
+
print("\nModel converted successfully!")
|
206 |
+
input("\nPress Enter to continue...")
|
207 |
+
|
208 |
+
except Exception as e:
|
209 |
+
print(f"\nError: {str(e)}")
|
210 |
+
input("\nPress Enter to continue...")
|
211 |
+
|
212 |
+
elif choice == "3":
|
213 |
+
try:
|
214 |
+
print("\nInitialize Model")
|
215 |
+
print("================")
|
216 |
+
print(f"Default folder path: {config['model']['folder_path']}")
|
217 |
+
if input("\nUse defaults? (Y/n): ").lower() != 'n':
|
218 |
+
result = client.initialize_model()
|
219 |
+
else:
|
220 |
+
folder_path = input("Enter model folder path: ").strip()
|
221 |
+
mode = input("Enter mode (cpu/gpu): ").strip()
|
222 |
+
result = client.initialize_model(
|
223 |
+
folder_path=folder_path,
|
224 |
+
mode=mode
|
225 |
+
)
|
226 |
+
print("\nSuccess! Model initialized.")
|
227 |
+
print(json.dumps(result, indent=2))
|
228 |
+
input("\nPress Enter to continue...")
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
print(f"\nError: {str(e)}")
|
232 |
+
input("\nPress Enter to continue...")
|
233 |
+
|
234 |
+
elif choice == "4":
|
235 |
+
try:
|
236 |
+
print("\nGenerate Text (Streaming)")
|
237 |
+
print("========================")
|
238 |
+
prompt = input("Enter your prompt: ").strip()
|
239 |
+
|
240 |
+
print("\nGenerating (Ctrl+C to stop)...")
|
241 |
+
print("\nResponse:")
|
242 |
+
try:
|
243 |
+
for chunk in client.generate_stream(prompt=prompt):
|
244 |
+
if "error" in chunk:
|
245 |
+
print(f"\nError: {chunk['error']}")
|
246 |
+
break
|
247 |
+
|
248 |
+
token = chunk.get("token", "")
|
249 |
+
is_finished = chunk.get("metadata", {}).get("is_finished", False)
|
250 |
+
|
251 |
+
if is_finished:
|
252 |
+
print("\n[Generation Complete]")
|
253 |
+
break
|
254 |
+
|
255 |
+
print(token, end="", flush=True)
|
256 |
+
|
257 |
+
except KeyboardInterrupt:
|
258 |
+
print("\n\n[Generation Stopped]")
|
259 |
+
|
260 |
+
input("\nPress Enter to continue...")
|
261 |
+
|
262 |
+
except Exception as e:
|
263 |
+
print(f"\nError: {str(e)}")
|
264 |
+
input("\nPress Enter to continue...")
|
265 |
+
|
266 |
+
elif choice == "5":
|
267 |
+
print("\nGoodbye!")
|
268 |
+
break
|
269 |
+
|
270 |
+
else:
|
271 |
+
print("\nInvalid choice. Please try again.")
|
272 |
+
input("\nPress Enter to continue...")
|
273 |
+
|
274 |
+
if __name__ == "__main__":
|
275 |
+
main()
|
client/client_config.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Project Configuration
|
2 |
+
project:
|
3 |
+
root_dir: ".."
|
4 |
+
checkpoints_dir: "checkpoints"
|
5 |
+
|
6 |
+
# Server Configuration
|
7 |
+
server:
|
8 |
+
url: "http://localhost:7860"
|
9 |
+
|
10 |
+
# Model Configuration
|
11 |
+
model:
|
12 |
+
name: "Llama-3.2-3B"
|
13 |
+
download_location: "huihui-ai/Llama-3.2-3B-Instruct-abliterated"
|
14 |
+
folder_path: "huihui-ai/Llama-3.2-3B-Instruct-abliterated"
|
15 |
+
model_filename: "lit_model.pth"
|
16 |
+
config_filename: "config.json"
|
17 |
+
tokenizer_filename: "tokenizer.json"
|
18 |
+
|
19 |
+
# Hardware Configuration
|
20 |
+
hardware:
|
21 |
+
mode: "gpu"
|
22 |
+
precision: "16-true"
|
23 |
+
# Precision Options: "32-true", "16-mixed", "16-true", "bf16-mixed", "bf16-true"
|
24 |
+
quantize: "bnb.int8"
|
25 |
+
# Quantization Options: "bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8"
|
26 |
+
gpu_count: "auto"
|
27 |
+
|
28 |
+
# Generation Parameters
|
29 |
+
generation:
|
30 |
+
max_new_tokens: 500
|
31 |
+
temperature: 1.0
|
32 |
+
top_k: null
|
33 |
+
top_p: 1.0
|
main/hf_downloader.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
from huggingface_hub import login, HfApi
|
5 |
+
import logging
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
# Set up logging
|
9 |
+
logging.basicConfig(
|
10 |
+
level=logging.INFO,
|
11 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
12 |
+
)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
def setup_auth(token):
|
16 |
+
"""Setup Hugging Face authentication"""
|
17 |
+
try:
|
18 |
+
login(token)
|
19 |
+
logger.info("Successfully authenticated with Hugging Face")
|
20 |
+
except Exception as e:
|
21 |
+
logger.error(f"Authentication failed: {str(e)}")
|
22 |
+
raise
|
23 |
+
|
24 |
+
def list_models(pattern=None):
|
25 |
+
"""List available models matching the pattern"""
|
26 |
+
try:
|
27 |
+
api = HfApi()
|
28 |
+
models = api.list_models(pattern=pattern, full=True)
|
29 |
+
return [(model.modelId, model.downloads) for model in models]
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Failed to list models: {str(e)}")
|
32 |
+
raise
|
33 |
+
|
34 |
+
def download_model(model_name, output_dir):
|
35 |
+
"""Download model and tokenizer"""
|
36 |
+
try:
|
37 |
+
logger.info(f"Downloading model: {model_name}")
|
38 |
+
|
39 |
+
# Create output directory if it doesn't exist
|
40 |
+
os.makedirs(output_dir, exist_ok=True)
|
41 |
+
|
42 |
+
# Download tokenizer
|
43 |
+
logger.info("Downloading tokenizer...")
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
tokenizer.save_pretrained(os.path.join(output_dir, model_name))
|
46 |
+
|
47 |
+
# Download model
|
48 |
+
logger.info("Downloading model...")
|
49 |
+
model = AutoModel.from_pretrained(model_name)
|
50 |
+
model.save_pretrained(os.path.join(output_dir, model_name))
|
51 |
+
|
52 |
+
logger.info(f"Successfully downloaded {model_name} to {output_dir}")
|
53 |
+
return True
|
54 |
+
except Exception as e:
|
55 |
+
logger.error(f"Failed to download model {model_name}: {str(e)}")
|
56 |
+
raise
|
57 |
+
|
58 |
+
def main():
|
59 |
+
parser = argparse.ArgumentParser(description='Download models from Hugging Face')
|
60 |
+
parser.add_argument('--token', type=str, help='Hugging Face API token')
|
61 |
+
parser.add_argument('--model', type=str, help='Model name to download')
|
62 |
+
parser.add_argument('--output', type=str, default='./models',
|
63 |
+
help='Output directory for downloaded models')
|
64 |
+
parser.add_argument('--search', type=str, help='Search pattern for models')
|
65 |
+
parser.add_argument('--list', action='store_true',
|
66 |
+
help='List available models matching the search pattern')
|
67 |
+
|
68 |
+
args = parser.parse_args()
|
69 |
+
|
70 |
+
try:
|
71 |
+
# Setup authentication if token provided
|
72 |
+
if args.token:
|
73 |
+
setup_auth(args.token)
|
74 |
+
|
75 |
+
# List models if requested
|
76 |
+
if args.list:
|
77 |
+
logger.info(f"Searching for models matching: {args.search}")
|
78 |
+
models = list_models(args.search)
|
79 |
+
print("\nAvailable models:")
|
80 |
+
for model_id, downloads in sorted(models, key=lambda x: x[1], reverse=True):
|
81 |
+
print(f"- {model_id} (Downloads: {downloads:,})")
|
82 |
+
return
|
83 |
+
|
84 |
+
# Download specific model
|
85 |
+
if args.model:
|
86 |
+
download_model(args.model, args.output)
|
87 |
+
else:
|
88 |
+
logger.error("Please specify a model to download using --model")
|
89 |
+
return
|
90 |
+
|
91 |
+
except KeyboardInterrupt:
|
92 |
+
logger.info("\nOperation cancelled by user")
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(f"An error occurred: {str(e)}")
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
main()
|
main/main.py
CHANGED
@@ -39,10 +39,12 @@ def main():
|
|
39 |
logger.info("Available endpoints:")
|
40 |
logger.info(" - /")
|
41 |
logger.info(" - /health")
|
|
|
42 |
logger.info(" - /initialize")
|
43 |
logger.info(" - /generate")
|
44 |
-
logger.info(" - /initialize/custom")
|
45 |
logger.info(" - /generate/stream")
|
|
|
|
|
46 |
logger.info(" - /docs")
|
47 |
logger.info(" - /redoc")
|
48 |
logger.info(" - /openapi.json")
|
|
|
39 |
logger.info("Available endpoints:")
|
40 |
logger.info(" - /")
|
41 |
logger.info(" - /health")
|
42 |
+
logger.info(" - /models")
|
43 |
logger.info(" - /initialize")
|
44 |
logger.info(" - /generate")
|
|
|
45 |
logger.info(" - /generate/stream")
|
46 |
+
logger.info(" - /download")
|
47 |
+
logger.info(" - /convert")
|
48 |
logger.info(" - /docs")
|
49 |
logger.info(" - /redoc")
|
50 |
logger.info(" - /openapi.json")
|
main/routes.py
CHANGED
@@ -1,11 +1,14 @@
|
|
|
|
1 |
from fastapi import APIRouter, HTTPException
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
-
from pydantic import BaseModel
|
4 |
-
from typing import Optional, Union, AsyncGenerator
|
5 |
import torch
|
6 |
import logging
|
7 |
from pathlib import Path
|
8 |
from litgpt.api import LLM
|
|
|
|
|
9 |
import json
|
10 |
import asyncio
|
11 |
|
@@ -19,224 +22,204 @@ router = APIRouter()
|
|
19 |
llm_instance = None
|
20 |
|
21 |
class InitializeRequest(BaseModel):
|
22 |
-
"""
|
23 |
-
|
24 |
-
""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
gpu_count: Union[str, int] = "auto"
|
29 |
-
model_path: str
|
30 |
|
31 |
class GenerateRequest(BaseModel):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
class StreamGenerateRequest(BaseModel):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
class
|
49 |
-
"""
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
""
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"""
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
|
|
70 |
try:
|
71 |
# Get the project root directory and construct paths
|
72 |
-
project_root = Path(__file__).parent
|
73 |
checkpoints_dir = project_root / "checkpoints"
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
detail=f"Config file not found: {request.config_filename}"
|
92 |
-
)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
detail=f"Tokenizer file not found: {request.tokenizer_filename}"
|
102 |
-
)
|
103 |
-
|
104 |
-
# Load the model using from_pretrained
|
105 |
-
llm_instance = LLM.from_pretrained(
|
106 |
-
path=str(model_dir),
|
107 |
-
model_file=request.model_filename,
|
108 |
-
config_file=request.config_filename,
|
109 |
-
tokenizer_file=request.tokenizer_filename if request.tokenizer_filename else None,
|
110 |
-
distribute=None if request.precision or request.quantize else "auto"
|
111 |
-
)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
devices=request.gpu_count,
|
118 |
-
precision=request.precision,
|
119 |
-
quantize=request.quantize
|
120 |
)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
f"Precision: {request.precision}\n"
|
127 |
-
f"Quantize: {request.quantize}\n"
|
128 |
-
f"GPU Count: {request.gpu_count}\n"
|
129 |
-
f"Model Directory: {model_dir}\n"
|
130 |
-
f"Model File: {request.model_filename}\n"
|
131 |
-
f"Config File: {request.config_filename}\n"
|
132 |
-
f"Tokenizer File: {request.tokenizer_filename}\n"
|
133 |
-
f"Current GPU Memory: {torch.cuda.memory_allocated()/1024**3:.2f}GB allocated, "
|
134 |
-
f"{torch.cuda.memory_reserved()/1024**3:.2f}GB reserved"
|
135 |
)
|
136 |
|
137 |
return {
|
138 |
-
"
|
139 |
-
"message": "
|
140 |
-
"
|
141 |
-
"folder": str(model_dir),
|
142 |
-
"model_file": request.model_filename,
|
143 |
-
"config_file": request.config_filename,
|
144 |
-
"tokenizer_file": request.tokenizer_filename
|
145 |
-
}
|
146 |
}
|
147 |
|
148 |
except Exception as e:
|
149 |
-
logger.error(f"Error
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
async def generate_stream(request: StreamGenerateRequest):
|
161 |
"""
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
"""
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
}
|
191 |
-
}
|
192 |
-
# Format as SSE data
|
193 |
-
yield f"data: {json.dumps(chunk)}\n\n"
|
194 |
-
|
195 |
-
# Small delay to prevent overwhelming the client
|
196 |
-
await asyncio.sleep(0.01)
|
197 |
-
|
198 |
-
# Send final message indicating completion
|
199 |
-
final_chunk = {
|
200 |
-
"token": "",
|
201 |
-
"metadata": {
|
202 |
-
"prompt": request.prompt,
|
203 |
-
"is_finished": True
|
204 |
-
}
|
205 |
-
}
|
206 |
-
yield f"data: {json.dumps(final_chunk)}\n\n"
|
207 |
-
|
208 |
-
except Exception as e:
|
209 |
-
logger.error(f"Error in stream generation: {str(e)}")
|
210 |
-
error_chunk = {
|
211 |
-
"error": str(e),
|
212 |
-
"metadata": {
|
213 |
-
"prompt": request.prompt,
|
214 |
-
"is_finished": True
|
215 |
-
}
|
216 |
-
}
|
217 |
-
yield f"data: {json.dumps(error_chunk)}\n\n"
|
218 |
-
|
219 |
-
return StreamingResponse(
|
220 |
-
event_generator(),
|
221 |
-
media_type="text/event-stream",
|
222 |
-
headers={
|
223 |
-
'Cache-Control': 'no-cache',
|
224 |
-
'Connection': 'keep-alive',
|
225 |
-
}
|
226 |
-
)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
return {
|
232 |
-
"status": "running",
|
233 |
-
"service": "LLM Engine",
|
234 |
-
"endpoints": {
|
235 |
-
"initialize": "/initialize",
|
236 |
-
"generate": "/generate",
|
237 |
-
"health": "/health"
|
238 |
-
}
|
239 |
-
}
|
240 |
|
241 |
@router.post("/initialize")
|
242 |
async def initialize_model(request: InitializeRequest):
|
@@ -247,7 +230,7 @@ async def initialize_model(request: InitializeRequest):
|
|
247 |
|
248 |
try:
|
249 |
# Get the project root directory (where main.py is located)
|
250 |
-
project_root = Path(__file__).parent
|
251 |
checkpoints_dir = project_root / "checkpoints"
|
252 |
logger.info(f"Checkpoint dir is: {checkpoints_dir}")
|
253 |
|
@@ -344,10 +327,80 @@ async def generate(request: GenerateRequest):
|
|
344 |
logger.error(f"Error generating text: {str(e)}")
|
345 |
raise HTTPException(status_code=500, detail=f"Error generating text: {str(e)}")
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
@router.get("/health")
|
348 |
async def health_check():
|
349 |
"""
|
350 |
Check if the service is running and model is loaded.
|
|
|
351 |
"""
|
352 |
global llm_instance
|
353 |
|
|
|
1 |
+
|
2 |
from fastapi import APIRouter, HTTPException
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
+
from typing import Optional, Union, AsyncGenerator, List
|
6 |
import torch
|
7 |
import logging
|
8 |
from pathlib import Path
|
9 |
from litgpt.api import LLM
|
10 |
+
from litgpt.scripts.download import download_from_hub
|
11 |
+
from litgpt.scripts.convert_hf_checkpoint import convert_hf_checkpoint
|
12 |
import json
|
13 |
import asyncio
|
14 |
|
|
|
22 |
llm_instance = None
|
23 |
|
24 |
class InitializeRequest(BaseModel):
|
25 |
+
"""Configuration for model initialization including model path"""
|
26 |
+
mode: str = Field(default="cpu", description="Execution mode ('cpu' or 'gpu')")
|
27 |
+
precision: Optional[str] = Field(None, description="Precision format (e.g., 'bf16-true', 'bf16-mixed')")
|
28 |
+
quantize: Optional[str] = Field(None, description="Quantization format (e.g., 'bnb.nf4')")
|
29 |
+
gpu_count: Union[str, int] = Field(default="auto", description="Number of GPUs to use or 'auto'")
|
30 |
+
model_path: str = Field(..., description="Path to the model relative to checkpoints directory")
|
|
|
|
|
31 |
|
32 |
class GenerateRequest(BaseModel):
|
33 |
+
"""Request parameters for text generation"""
|
34 |
+
prompt: str = Field(..., description="Input text prompt for generation")
|
35 |
+
max_new_tokens: int = Field(default=50, description="Maximum number of tokens to generate")
|
36 |
+
temperature: float = Field(default=1.0, description="Sampling temperature")
|
37 |
+
top_k: Optional[int] = Field(None, description="Top-k sampling parameter")
|
38 |
+
top_p: float = Field(default=1.0, description="Top-p sampling parameter")
|
39 |
+
return_as_token_ids: bool = Field(default=False, description="Whether to return token IDs instead of text")
|
40 |
+
stream: bool = Field(default=False, description="Whether to stream the response")
|
41 |
+
|
42 |
class StreamGenerateRequest(BaseModel):
|
43 |
+
"""Request parameters for streaming text generation"""
|
44 |
+
prompt: str = Field(..., description="Input text prompt for generation")
|
45 |
+
max_new_tokens: int = Field(default=50, description="Maximum number of tokens to generate")
|
46 |
+
temperature: float = Field(default=1.0, description="Sampling temperature")
|
47 |
+
top_k: Optional[int] = Field(None, description="Top-k sampling parameter")
|
48 |
+
top_p: float = Field(default=1.0, description="Top-p sampling parameter")
|
49 |
+
|
50 |
+
class DownloadModelRequest(BaseModel):
|
51 |
+
"""Request to download a model from HuggingFace"""
|
52 |
+
repo_id: str = Field(
|
53 |
+
...,
|
54 |
+
description="HuggingFace repository ID (e.g., 'huihui-ai/Llama-3.2-3B-Instruct-abliterated')"
|
55 |
+
)
|
56 |
+
model_name: str = Field(
|
57 |
+
...,
|
58 |
+
description="Model architecture name (e.g., 'Llama-3.2-3B-Instruct')"
|
59 |
+
)
|
60 |
+
access_token: Optional[str] = Field(
|
61 |
+
None,
|
62 |
+
description="HuggingFace access token for private models"
|
63 |
+
)
|
64 |
|
65 |
+
class ConvertModelRequest(BaseModel):
|
66 |
+
"""Request to convert a downloaded model"""
|
67 |
+
folder_path: str = Field(
|
68 |
+
...,
|
69 |
+
description="Path relative to checkpoints where model was downloaded"
|
70 |
+
)
|
71 |
+
model_name: str = Field(
|
72 |
+
...,
|
73 |
+
description="Model architecture name for conversion"
|
74 |
+
)
|
75 |
+
|
76 |
+
class ModelResponse(BaseModel):
|
77 |
+
"""Model information response"""
|
78 |
+
name: str = Field(..., description="Full model name including organization")
|
79 |
+
path: str = Field(..., description="Relative path in checkpoints directory")
|
80 |
+
downloaded: bool = Field(..., description="Whether the model files are downloaded")
|
81 |
+
converted: bool = Field(..., description="Whether the model is converted to LitGPT format")
|
82 |
+
has_safetensors: bool = Field(..., description="Whether safetensors files are present")
|
83 |
+
files: List[str] = Field(..., description="List of files in model directory")
|
84 |
+
|
85 |
+
class ModelsListResponse(BaseModel):
|
86 |
+
"""Response for listing models"""
|
87 |
+
models: List[ModelResponse] = Field(..., description="List of available models")
|
88 |
+
|
89 |
+
@router.post(
|
90 |
+
"/download",
|
91 |
+
response_model=dict,
|
92 |
+
summary="Download a model from HuggingFace Hub",
|
93 |
+
description="Downloads a model from HuggingFace to the LLM Engine's checkpoints directory",
|
94 |
+
response_description="Download status and location information"
|
95 |
+
)
|
96 |
+
async def download_model(request: DownloadModelRequest):
|
97 |
"""
|
98 |
+
Download a model from HuggingFace Hub.
|
99 |
+
|
100 |
+
- Downloads model files to the checkpoints directory
|
101 |
+
- Creates necessary subdirectories
|
102 |
+
- Handles authentication for private models
|
103 |
|
104 |
+
Returns:
|
105 |
+
A JSON object containing download status and path information
|
106 |
+
"""
|
107 |
try:
|
108 |
# Get the project root directory and construct paths
|
109 |
+
project_root = Path(__file__).parent.parent
|
110 |
checkpoints_dir = project_root / "checkpoints"
|
111 |
+
logger.info(f"Downloading model {request.repo_id} to {checkpoints_dir}")
|
112 |
+
|
113 |
+
download_from_hub(
|
114 |
+
repo_id=request.repo_id,
|
115 |
+
model_name=request.model_name,
|
116 |
+
access_token=request.access_token,
|
117 |
+
checkpoint_dir=checkpoints_dir,
|
118 |
+
tokenizer_only=False
|
119 |
+
)
|
120 |
|
121 |
+
return {
|
122 |
+
"status": "success",
|
123 |
+
"message": f"Model downloaded to {checkpoints_dir / request.repo_id}",
|
124 |
+
"path": str(request.repo_id)
|
125 |
+
}
|
126 |
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error downloading model: {str(e)}")
|
129 |
+
raise HTTPException(status_code=500, detail=f"Error downloading model: {str(e)}")
|
130 |
+
|
131 |
+
@router.post(
|
132 |
+
"/convert",
|
133 |
+
response_model=dict,
|
134 |
+
summary="Convert a model to LitGPT format",
|
135 |
+
description="Converts a downloaded model to the LitGPT format required for inference",
|
136 |
+
response_description="Conversion status and location information"
|
137 |
+
)
|
138 |
+
async def convert_model(request: ConvertModelRequest):
|
139 |
+
"""
|
140 |
+
Convert a downloaded model to LitGPT format.
|
141 |
|
142 |
+
- Converts model files to LitGPT's format
|
143 |
+
- Creates lit_model.pth file
|
144 |
+
- Maintains original files
|
|
|
|
|
145 |
|
146 |
+
Returns:
|
147 |
+
A JSON object containing conversion status and path information
|
148 |
+
"""
|
149 |
+
try:
|
150 |
+
project_root = Path(__file__).parent.parent
|
151 |
+
checkpoints_dir = project_root / "checkpoints"
|
152 |
+
model_dir = checkpoints_dir / request.folder_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
if not model_dir.exists():
|
155 |
+
raise HTTPException(
|
156 |
+
status_code=404,
|
157 |
+
detail=f"Model directory not found: {request.folder_path}"
|
|
|
|
|
|
|
158 |
)
|
159 |
|
160 |
+
logger.info(f"Converting model in {model_dir}")
|
161 |
+
convert_hf_checkpoint(
|
162 |
+
checkpoint_dir=model_dir,
|
163 |
+
model_name=request.model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
|
166 |
return {
|
167 |
+
"status": "success",
|
168 |
+
"message": f"Model converted successfully",
|
169 |
+
"path": str(request.folder_path)
|
|
|
|
|
|
|
|
|
|
|
170 |
}
|
171 |
|
172 |
except Exception as e:
|
173 |
+
logger.error(f"Error converting model: {str(e)}")
|
174 |
+
raise HTTPException(status_code=500, detail=f"Error converting model: {str(e)}")
|
175 |
+
|
176 |
+
@router.get(
|
177 |
+
"/models",
|
178 |
+
response_model=ModelsListResponse,
|
179 |
+
summary="List available models",
|
180 |
+
description="Lists all models in the checkpoints directory with their status",
|
181 |
+
response_description="List of models with their details and status"
|
182 |
+
)
|
183 |
+
async def list_models():
|
|
|
184 |
"""
|
185 |
+
List all models in the checkpoints directory.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
A JSON object containing:
|
189 |
+
- List of models
|
190 |
+
- Each model's download status
|
191 |
+
- Each model's conversion status
|
192 |
+
- Available files for each model
|
193 |
"""
|
194 |
+
try:
|
195 |
+
project_root = Path(__file__).parent.parent
|
196 |
+
checkpoints_dir = project_root / "checkpoints"
|
197 |
+
models = []
|
198 |
+
|
199 |
+
if checkpoints_dir.exists():
|
200 |
+
for org_dir in checkpoints_dir.iterdir():
|
201 |
+
if org_dir.is_dir():
|
202 |
+
for model_dir in org_dir.iterdir():
|
203 |
+
if model_dir.is_dir():
|
204 |
+
files = [f.name for f in model_dir.iterdir()]
|
205 |
+
has_safetensors = any(f.endswith('.safetensors') for f in files)
|
206 |
+
has_lit_model = 'lit_model.pth' in files
|
207 |
+
|
208 |
+
model_info = ModelResponse(
|
209 |
+
name=f"{org_dir.name}/{model_dir.name}",
|
210 |
+
path=str(model_dir.relative_to(checkpoints_dir)),
|
211 |
+
downloaded=True,
|
212 |
+
converted=has_lit_model,
|
213 |
+
has_safetensors=has_safetensors,
|
214 |
+
files=files
|
215 |
+
)
|
216 |
+
models.append(model_info)
|
217 |
+
|
218 |
+
return ModelsListResponse(models=models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
except Exception as e:
|
221 |
+
logger.error(f"Error listing models: {str(e)}")
|
222 |
+
raise HTTPException(status_code=500, detail=f"Error listing models: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
@router.post("/initialize")
|
225 |
async def initialize_model(request: InitializeRequest):
|
|
|
230 |
|
231 |
try:
|
232 |
# Get the project root directory (where main.py is located)
|
233 |
+
project_root = Path(__file__).parent.parent
|
234 |
checkpoints_dir = project_root / "checkpoints"
|
235 |
logger.info(f"Checkpoint dir is: {checkpoints_dir}")
|
236 |
|
|
|
327 |
logger.error(f"Error generating text: {str(e)}")
|
328 |
raise HTTPException(status_code=500, detail=f"Error generating text: {str(e)}")
|
329 |
|
330 |
+
@router.post("/generate/stream")
|
331 |
+
async def generate_stream(request: StreamGenerateRequest):
|
332 |
+
"""
|
333 |
+
Generate text using the initialized model with streaming response.
|
334 |
+
Returns a StreamingResponse that yields JSON-formatted chunks of text.
|
335 |
+
"""
|
336 |
+
global llm_instance
|
337 |
+
|
338 |
+
if llm_instance is None:
|
339 |
+
raise HTTPException(
|
340 |
+
status_code=400,
|
341 |
+
detail="Model not initialized. Call /initialize first."
|
342 |
+
)
|
343 |
+
|
344 |
+
async def event_generator() -> AsyncGenerator[str, None]:
|
345 |
+
try:
|
346 |
+
# Start the generation with streaming enabled
|
347 |
+
for token in llm_instance.generate(
|
348 |
+
prompt=request.prompt,
|
349 |
+
max_new_tokens=request.max_new_tokens,
|
350 |
+
temperature=request.temperature,
|
351 |
+
top_k=request.top_k,
|
352 |
+
top_p=request.top_p,
|
353 |
+
stream=True # Enable streaming
|
354 |
+
):
|
355 |
+
# Create a JSON response for each token
|
356 |
+
chunk = {
|
357 |
+
"token": token,
|
358 |
+
"metadata": {
|
359 |
+
"prompt": request.prompt,
|
360 |
+
"is_finished": False
|
361 |
+
}
|
362 |
+
}
|
363 |
+
# Format as SSE data
|
364 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
365 |
+
|
366 |
+
# Small delay to prevent overwhelming the client
|
367 |
+
await asyncio.sleep(0.01)
|
368 |
+
|
369 |
+
# Send final message indicating completion
|
370 |
+
final_chunk = {
|
371 |
+
"token": "",
|
372 |
+
"metadata": {
|
373 |
+
"prompt": request.prompt,
|
374 |
+
"is_finished": True
|
375 |
+
}
|
376 |
+
}
|
377 |
+
yield f"data: {json.dumps(final_chunk)}\n\n"
|
378 |
+
|
379 |
+
except Exception as e:
|
380 |
+
logger.error(f"Error in stream generation: {str(e)}")
|
381 |
+
error_chunk = {
|
382 |
+
"error": str(e),
|
383 |
+
"metadata": {
|
384 |
+
"prompt": request.prompt,
|
385 |
+
"is_finished": True
|
386 |
+
}
|
387 |
+
}
|
388 |
+
yield f"data: {json.dumps(error_chunk)}\n\n"
|
389 |
+
|
390 |
+
return StreamingResponse(
|
391 |
+
event_generator(),
|
392 |
+
media_type="text/event-stream",
|
393 |
+
headers={
|
394 |
+
'Cache-Control': 'no-cache',
|
395 |
+
'Connection': 'keep-alive',
|
396 |
+
}
|
397 |
+
)
|
398 |
+
|
399 |
@router.get("/health")
|
400 |
async def health_check():
|
401 |
"""
|
402 |
Check if the service is running and model is loaded.
|
403 |
+
Returns status information including model details if loaded.
|
404 |
"""
|
405 |
global llm_instance
|
406 |
|