Spaces:
Paused
Paused
Commit
·
d828ce4
1
Parent(s):
b3cf4b4
First commit
Browse files- dockerfile +43 -0
- main/__init__.py +0 -0
- main/api.py +0 -0
- main/main.py +179 -0
- requirements.txt +7 -0
- setup_project.py +48 -0
dockerfile
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use NVIDIA CUDA base image
|
2 |
+
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 as base
|
3 |
+
|
4 |
+
# Set working directory to /code (Hugging Face Spaces convention)
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Install system dependencies
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
python3.10 \
|
10 |
+
python3-pip \
|
11 |
+
git \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Install Python packages
|
15 |
+
COPY requirements.txt .
|
16 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
17 |
+
|
18 |
+
# Install any additional dependencies needed for litgpt
|
19 |
+
RUN pip3 install --no-cache-dir \
|
20 |
+
einops \
|
21 |
+
xformers \
|
22 |
+
bitsandbytes \
|
23 |
+
accelerate \
|
24 |
+
sentencepiece
|
25 |
+
|
26 |
+
# Copy the application code
|
27 |
+
COPY . .
|
28 |
+
|
29 |
+
# Create model directory structure
|
30 |
+
RUN mkdir -p /code/checkout/meta \
|
31 |
+
/code/checkout/microsoft \
|
32 |
+
/code/checkout/mistralai
|
33 |
+
|
34 |
+
# Set environment variables
|
35 |
+
ENV PYTHONPATH=/code
|
36 |
+
ENV LLM_ENGINE_HOST=0.0.0.0
|
37 |
+
ENV LLM_ENGINE_PORT=8001
|
38 |
+
|
39 |
+
# Expose the port the app runs on
|
40 |
+
EXPOSE 8001
|
41 |
+
|
42 |
+
# Command to run the application
|
43 |
+
CMD ["python3", "main.py"]
|
main/__init__.py
ADDED
File without changes
|
main/api.py
ADDED
File without changes
|
main/main.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import Optional, Dict, Any, Union
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
from pathlib import Path
|
7 |
+
from litgpt.api import LLM
|
8 |
+
import os
|
9 |
+
import uvicorn
|
10 |
+
|
11 |
+
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
app = FastAPI(title="LLM Engine Service")
|
16 |
+
|
17 |
+
# Global variable to store the LLM instance
|
18 |
+
llm_instance = None
|
19 |
+
|
20 |
+
class InitializeRequest(BaseModel):
|
21 |
+
"""
|
22 |
+
Configuration for model initialization including model path
|
23 |
+
"""
|
24 |
+
mode: str = "cpu"
|
25 |
+
precision: Optional[str] = None
|
26 |
+
quantize: Optional[str] = None
|
27 |
+
gpu_count: Union[str, int] = "auto"
|
28 |
+
model_path: str
|
29 |
+
|
30 |
+
class GenerateRequest(BaseModel):
|
31 |
+
prompt: str
|
32 |
+
max_new_tokens: int = 50
|
33 |
+
temperature: float = 1.0
|
34 |
+
top_k: Optional[int] = None
|
35 |
+
top_p: float = 1.0
|
36 |
+
return_as_token_ids: bool = False
|
37 |
+
stream: bool = False
|
38 |
+
|
39 |
+
@app.post("/initialize")
|
40 |
+
async def initialize_model(request: InitializeRequest):
|
41 |
+
"""
|
42 |
+
Initialize the LLM model with specified configuration.
|
43 |
+
"""
|
44 |
+
global llm_instance
|
45 |
+
|
46 |
+
try:
|
47 |
+
if request.precision is None and request.quantize is None:
|
48 |
+
# Use auto distribution from load when no specific precision or quantization is set
|
49 |
+
llm_instance = LLM.load(
|
50 |
+
model=request.model_path,
|
51 |
+
distribute="auto" # Let the load function handle distribution automatically
|
52 |
+
)
|
53 |
+
|
54 |
+
logger.info(
|
55 |
+
f"Model initialized with auto settings:\n"
|
56 |
+
f"Model Path: {request.model_path}\n"
|
57 |
+
f"Current GPU Memory: {torch.cuda.memory_allocated()/1024**3:.2f}GB allocated, "
|
58 |
+
f"{torch.cuda.memory_reserved()/1024**3:.2f}GB reserved"
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
# Original initialization path for when specific settings are requested
|
62 |
+
llm_instance = LLM.load(
|
63 |
+
model=request.model_path,
|
64 |
+
distribute=None # We'll distribute manually
|
65 |
+
)
|
66 |
+
|
67 |
+
# Distribute the model according to the configuration
|
68 |
+
llm_instance.distribute(
|
69 |
+
accelerator="cuda" if request.mode == "gpu" else "cpu",
|
70 |
+
devices=request.gpu_count,
|
71 |
+
precision=request.precision,
|
72 |
+
quantize=request.quantize
|
73 |
+
)
|
74 |
+
|
75 |
+
logger.info(
|
76 |
+
f"Model initialized successfully with config:\n"
|
77 |
+
f"Mode: {request.mode}\n"
|
78 |
+
f"Precision: {request.precision}\n"
|
79 |
+
f"Quantize: {request.quantize}\n"
|
80 |
+
f"GPU Count: {request.gpu_count}\n"
|
81 |
+
f"Model Path: {request.model_path}\n"
|
82 |
+
f"Current GPU Memory: {torch.cuda.memory_allocated()/1024**3:.2f}GB allocated, "
|
83 |
+
f"{torch.cuda.memory_reserved()/1024**3:.2f}GB reserved"
|
84 |
+
)
|
85 |
+
|
86 |
+
return {"success": True, "message": "Model initialized successfully"}
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
logger.error(f"Error initializing model: {str(e)}")
|
90 |
+
# Print detailed memory statistics on failure
|
91 |
+
logger.error(f"GPU Memory Stats:\n"
|
92 |
+
f"Allocated: {torch.cuda.memory_allocated()/1024**3:.2f}GB\n"
|
93 |
+
f"Reserved: {torch.cuda.memory_reserved()/1024**3:.2f}GB\n"
|
94 |
+
f"Max Allocated: {torch.cuda.max_memory_allocated()/1024**3:.2f}GB")
|
95 |
+
raise HTTPException(status_code=500, detail=f"Error initializing model: {str(e)}")
|
96 |
+
|
97 |
+
@app.post("/generate")
|
98 |
+
async def generate(request: GenerateRequest):
|
99 |
+
"""
|
100 |
+
Generate text using the initialized model.
|
101 |
+
"""
|
102 |
+
global llm_instance
|
103 |
+
|
104 |
+
if llm_instance is None:
|
105 |
+
raise HTTPException(status_code=400, detail="Model not initialized. Call /initialize first.")
|
106 |
+
|
107 |
+
try:
|
108 |
+
if request.stream:
|
109 |
+
# For streaming responses, we need to handle differently
|
110 |
+
# This is a placeholder as the actual streaming implementation
|
111 |
+
# would need to use StreamingResponse from FastAPI
|
112 |
+
raise HTTPException(
|
113 |
+
status_code=400,
|
114 |
+
detail="Streaming is not currently supported through the API"
|
115 |
+
)
|
116 |
+
|
117 |
+
generated_text = llm_instance.generate(
|
118 |
+
prompt=request.prompt,
|
119 |
+
max_new_tokens=request.max_new_tokens,
|
120 |
+
temperature=request.temperature,
|
121 |
+
top_k=request.top_k,
|
122 |
+
top_p=request.top_p,
|
123 |
+
return_as_token_ids=request.return_as_token_ids,
|
124 |
+
stream=False # Force stream to False for now
|
125 |
+
)
|
126 |
+
|
127 |
+
response = {
|
128 |
+
"generated_text": generated_text if not request.return_as_token_ids else generated_text.tolist(),
|
129 |
+
"metadata": {
|
130 |
+
"prompt": request.prompt,
|
131 |
+
"max_new_tokens": request.max_new_tokens,
|
132 |
+
"temperature": request.temperature,
|
133 |
+
"top_k": request.top_k,
|
134 |
+
"top_p": request.top_p
|
135 |
+
}
|
136 |
+
}
|
137 |
+
|
138 |
+
return response
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Error generating text: {str(e)}")
|
142 |
+
raise HTTPException(status_code=500, detail=f"Error generating text: {str(e)}")
|
143 |
+
|
144 |
+
@app.get("/health")
|
145 |
+
async def health_check():
|
146 |
+
"""
|
147 |
+
Check if the service is running and model is loaded.
|
148 |
+
"""
|
149 |
+
global llm_instance
|
150 |
+
|
151 |
+
status = {
|
152 |
+
"status": "healthy",
|
153 |
+
"model_loaded": llm_instance is not None,
|
154 |
+
}
|
155 |
+
|
156 |
+
if llm_instance is not None:
|
157 |
+
status["model_info"] = {
|
158 |
+
"model_path": llm_instance.config.name,
|
159 |
+
"device": str(next(llm_instance.model.parameters()).device)
|
160 |
+
}
|
161 |
+
|
162 |
+
return status
|
163 |
+
|
164 |
+
def main():
|
165 |
+
# Load environment variables or configuration here
|
166 |
+
host = os.getenv("LLM_ENGINE_HOST", "0.0.0.0")
|
167 |
+
port = int(os.getenv("LLM_ENGINE_PORT", "8001"))
|
168 |
+
|
169 |
+
# Start the server
|
170 |
+
uvicorn.run(
|
171 |
+
app,
|
172 |
+
host=host,
|
173 |
+
port=port,
|
174 |
+
log_level="info",
|
175 |
+
reload=False
|
176 |
+
)
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.109.0
|
2 |
+
uvicorn==0.27.0
|
3 |
+
pydantic==2.5.3
|
4 |
+
torch==2.5.0
|
5 |
+
transformers==4.36.2
|
6 |
+
litgpt[all]
|
7 |
+
python-dotenv==1.0.0
|
setup_project.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
import venv
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
def setup_project():
|
8 |
+
# Ensure we're in the right directory
|
9 |
+
project_dir = Path(__file__).parent.absolute()
|
10 |
+
os.chdir(project_dir)
|
11 |
+
|
12 |
+
print("Setting up the project...")
|
13 |
+
|
14 |
+
# Create virtual environment if it doesn't exist
|
15 |
+
venv_dir = project_dir / "myenv"
|
16 |
+
if not venv_dir.exists():
|
17 |
+
print("Creating virtual environment...")
|
18 |
+
venv.create(venv_dir, with_pip=True)
|
19 |
+
|
20 |
+
# Determine the path to the Python executable in the virtual environment
|
21 |
+
if sys.platform == "win32":
|
22 |
+
python_executable = venv_dir / "Scripts" / "python.exe"
|
23 |
+
pip_executable = venv_dir / "Scripts" / "pip.exe"
|
24 |
+
else:
|
25 |
+
python_executable = venv_dir / "bin" / "python"
|
26 |
+
pip_executable = venv_dir / "bin" / "pip"
|
27 |
+
|
28 |
+
# Upgrade pip
|
29 |
+
print("Upgrading pip...")
|
30 |
+
subprocess.run([str(python_executable), "-m", "pip", "install", "--upgrade", "pip"])
|
31 |
+
|
32 |
+
# Install requirements
|
33 |
+
print("Installing requirements...")
|
34 |
+
requirements_file = project_dir / "requirements.txt"
|
35 |
+
if requirements_file.exists():
|
36 |
+
subprocess.run([str(pip_executable), "install", "-r", "requirements.txt"])
|
37 |
+
else:
|
38 |
+
print("Warning: requirements.txt not found!")
|
39 |
+
|
40 |
+
print("\nSetup completed successfully!")
|
41 |
+
print("\nTo activate the virtual environment:")
|
42 |
+
if sys.platform == "win32":
|
43 |
+
print(f" {venv_dir}\\Scripts\\activate")
|
44 |
+
else:
|
45 |
+
print(f" source {venv_dir}/bin/activate")
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
setup_project()
|