Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from datasets import load_dataset | |
huggingface-cli login | |
# Load LLaMA model and tokenizer from Hugging Face | |
model_name = "meta-llama/Llama-3.2-1B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Load financial dataset to enrich responses | |
dataset = load_dataset("gbharti/finance-alpaca") | |
# Helper function to extract dataset info (optional enhancement) | |
def get_insight_from_dataset(): | |
sample = dataset["train"].shuffle(seed=42).select([0])[0] | |
return f"Example insight: {sample['text']}" | |
# Function to process user input and generate financial advice | |
def financial_advisor(user_input): | |
# Tokenize the user input | |
inputs = tokenizer(user_input, return_tensors="pt") | |
# Generate response using the LLaMA model | |
outputs = model.generate(**inputs, max_length=256, num_return_sequences=1) | |
advice = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Get additional insight from dataset to enrich advice (optional) | |
insight = get_insight_from_dataset() | |
# Combine the advice and the insight | |
full_response = f"Advice: {advice}\n\n{insight}" | |
return full_response | |
# Create Gradio Interface | |
interface = gr.Interface( | |
fn=financial_advisor, | |
inputs=gr.Textbox(lines=5, placeholder="Enter your financial question..."), | |
outputs="text", | |
title="AI Financial Advisor", | |
description="Ask me anything related to finance, investments, savings, and more.", | |
examples=[ | |
"Should I invest in stocks or real estate?", | |
"How can I save more money on a tight budget?", | |
"What are some good investment options for retirement?", | |
] | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |