File size: 1,608 Bytes
e23ea2d 0f45270 e23ea2d 56c1e64 e23ea2d d76976b e23ea2d d76976b 0f45270 f9df74e b96ceec 0f45270 d76976b c4c45b9 0f45270 9513043 0e87b70 e23ea2d 0e87b70 0f45270 0e87b70 e23ea2d b8c70f9 e23ea2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from gradio_client import Client
import os
import requests
tulu = "https://tonic1-tulu.hf.space/--replicas/kzf7f/"
def predict_beta(message, chatbot=[], system_prompt=""):
client = Client(tulu)
try:
max_new_tokens = 800
temperature = 0.4
top_p = 0.9
repetition_penalty = 0.9
advanced = True
# Making the prediction
result = client.predict(
message,
system_prompt,
max_new_tokens,
temperature,
top_p,
repetition_penalty,
advanced,
fn_index=0
)
print("Raw API Response:", result) # Debugging print
if result is not None:
print("Processed bot_message:", result) # Debugging print
return result
else:
print("No response or empty response from the model.") # Debugging print
return None
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
print(error_msg) # Debugging print
return None
def test_preview_chatbot(message, history):
response = predict_beta(message, history, SYSTEM_PROMPT)
return response
welcome_preview_message = f"""
Welcome to **{TITLE}**! Say something like:
''{EXAMPLE_INPUT}''
"""
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
demo.launch() |