File size: 13,536 Bytes
e23ea2d 56ece3e 4e5f073 e23ea2d c16d4f4 e23ea2d 7dfaddf e23ea2d 239a985 e23ea2d 239a985 540d71c e0ab507 323ae96 e23ea2d 540d71c e23ea2d 323ae96 c285801 323ae96 e23ea2d 540d71c 323ae96 e0ab507 35996b9 e23ea2d c285801 56ece3e e23ea2d 56ece3e ab1b1e7 56ece3e 1d8f5b2 70358c4 e23ea2d 70358c4 83e252e 56ece3e 70358c4 1d8f5b2 c285801 f387b9b b8afcbf c285801 e23ea2d 0cde323 0b8e27d 40faa53 0b8e27d 40faa53 0b8e27d 40faa53 0b8e27d 40faa53 0b8e27d 844109c 40faa53 844109c 0b8e27d 0bf7dd6 e23ea2d 0ba7762 e23ea2d 9ebf7b6 e23ea2d 9ebf7b6 e23ea2d 4194468 e23ea2d 239a985 e23ea2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import requests
import json
import huggingface_hub
from huggingface_hub import HfApi
from gradio_client import Client
import os
HF_TOKEN = os.environ["HF_TOKEN"]
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
tulu = "https://tonic1-tulu.hf.space/--replicas/kzf7f/"
welcome_message = """
Hi! I'm using [Tulu from AlenAi](https://huggingface.co/spaces/Tonic1/Tulu) I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup."
What would you like to make?
"""
welcome_preview_message = """
Welcome to **{}**! Say something like:
"{}"
"""
# sample_response = """
# Certainly! Here we go:
# Title: Recipe Recommender
# System Prompt: Utilize your language model abilities to suggest delicious recipes based on user preferences such as ingredients, cuisine type, cooking time, etc. Ensure accuracy and variety while maintaining a conversational style with the user.
# Example User Input: Vegetarian dinner ideas under 30 minutes
# """
system_prompt = """
I an AI whose job it is to help users create their own chatbots. In particular, I respond using titles and subtiles in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. I make sure each part is included.
I only respond in the following format :
# Title:
# System prompt:
# Example input:
<|user|>
"make a bot that gives advice on how to grow your startup",
<|assistant|>
I first do a friendly response, then I add the title, system prompt, and example user input. I Immediately STOP after the example input. It should be EXACTLY in this format:
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
# Title: Startup Coach
# System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful.
# Example input: Risks of setting up a non-profit board
<|user|>
Make a chatbot that roasts tech ceos
<|assistant|>
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
# Title: Tech Roaster
# System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect.
# Example input: Elon Musk
<|user|>
Make an app that producesses assessments
<|assistant|>
Sure, I'd be happy to help you build an app! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
# Title: Assessment Genius
# System prompt: Your app's primary function is to provide assessments for users. These assessments should be relevant, useful, and accurate. Keep in mind that the app should be user-friendly and easy to navigate.
# Example input: Personality Assessment
<|user|>
make a gpt that helps to create mutants and masterminds characters
<|assistant|>
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
# Title: Mutants and Masterminds Character Creator
# System prompt: As an LLM, your job is to help users create characters for the Mutants and Masterminds tabletop RPG. Your prompts should be clear and concise, and should help users make characters that are both fun and balanced.
# Example input: Create a character with the Power Level 10
"""
def predict_beta(message, chatbot=[], system_prompt=system_prompt, max_new_tokens=650, temperature=0.4, top_p=0.90, repetition_penalty=0.90, advanced=True):
client = Client(tulu)
try:
result = client.predict(
message,
system_prompt,
max_new_tokens,
temperature,
top_p,
repetition_penalty,
advanced,
fn_index=0
)
print("Raw API Response:", result) # Debugging print
if result is not None:
print("Processed bot_message:", result) # Debugging print
return result
else:
print("No response or empty response from the model.") # Debugging print
return None
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
print(error_msg) # Debugging print
return None
def extract_title_prompt_example(text):
default_title = "Custom GPT Agent"
default_system_prompt = "This is a custom GPT agent."
default_example_input = "Type your query here."
# Split the text into lines and reverse it to start from the end
lines = text.split('\n')
lines.reverse()
title = default_title
system_prompt = default_system_prompt
example_input = default_example_input
# Flags to check if we have found the sections
found_title, found_prompt, found_example = False, False, False
for line in lines:
if not found_example and line.startswith("# Example input:"):
example_input = line.replace("# Example input:", "").strip()
found_example = True
elif not found_prompt and line.startswith("# System prompt:"):
system_prompt = line.replace("# System prompt:", "").strip()
found_prompt = True
elif not found_title and line.startswith("# Title:"):
title = line.replace("# Title:", "").strip()
found_title = True
# Break the loop if all sections are found
if found_title and found_prompt and found_example:
break
return text, title, system_prompt, example_input
def make_open_gpt(message, history, current_title, current_system_prompt, current_example_input, system_prompt=system_prompt):
try:
response = predict_beta(message, history, system_prompt)
if not response:
raise ValueError("Empty response from predict_beta")
print("Response from predict_beta:", response) # Debugging print
except Exception as e:
response = f"Error in predict_beta: {str(e)}"
print("Error in predict_beta:", response) # Debugging print
# Set error values
title = "Error"
system_prompt = "Error in predict_beta"
example_input = "Error"
else:
try:
_, title, system_prompt, example_input = extract_title_prompt_example(response)
except Exception as e:
title = "Error"
system_prompt = "Error in extraction"
example_input = "Error"
print(f"Error in extract_title_prompt_example: {str(e)}")
# Ensure all expected outputs are returned
return (
"", # Placeholder for textbox
history + [(message, response)], # Updated chatbot history
title or current_title, # Extracted or default title
system_prompt or current_system_prompt, # Extracted or default system prompt
example_input or current_example_input, # Extracted or default example input
[(None, welcome_preview_message.format(title or current_title, example_input or current_example_input))], # Updated chatbot preview
example_input or current_example_input, # Example input for textbox_preview
gr.Column(visible=True), # Column visibility control
gr.Group(visible=True) # Group visibility control
)
def set_title_example(title, example):
return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True)
chatbot_preview = gr.Chatbot(layout="panel")
textbox_preview = gr.Textbox(scale=7, container=False)
def test_preview_chatbot(message, history, system_prompt):
response = predict_beta(message, history, system_prompt)
return response
def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str:
"""Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes."""
filename = filename.replace(" ", "-")
filename = "".join([char for char in filename if char.isalnum() or char in "_-"])
filename_len = len(filename.encode())
if filename_len > max_bytes:
while filename_len > max_bytes:
if len(filename) == 0:
break
filename = filename[:-1]
filename_len = len(filename.encode())
return filename
constants = """
SYSTEM_PROMPT = "{}"
TITLE = "{}"
EXAMPLE_INPUT = "{}"
"""
def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token):
source_file = 'app_template.py'
destination_file = 'app.py'
constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example)
with open(source_file, 'r') as file:
original_content = file.read()
with open(destination_file, 'w') as file:
file.write(constants_formatted + original_content)
title = strip_invalid_filename_characters(textbox_title, max_bytes=30)
api = HfApi(token=textbox_token)
new_space = api.create_repo(
repo_id=f"open-gpt-{title}",
repo_type="space",
exist_ok=True,
private=False,
space_sdk="gradio",
token=textbox_token,
)
api.upload_file(
repo_id=new_space.repo_id,
path_or_fileobj='app.py',
path_in_repo='app.py',
token=textbox_token,
repo_type="space",
)
api.upload_file(
repo_id=new_space.repo_id,
path_or_fileobj='README_template.md',
path_in_repo='README.md',
token=textbox_token,
repo_type="space",
)
huggingface_hub.add_space_secret(
new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token
)
return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} ✅", visible=True), gr.Button("Publish", interactive=True)
css = """
#preview-tab-button{
font-weight: bold;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(""" # 👋🏻Welcome to 🕵🏻♂️Agent🌷Tulu
**A🕵🏻♂️Agent🌷Tulu** lets you create your own **open-source GPTs** using [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b). Start chatting to automatically below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free & publish them on Spaces (as Open GPTs are powered by the [Tulu DPO model](https://huggingface.co/allenai/tulu-2-dpo-70b) ).
You think this is cool + want to make your own ? check out [GPTBaker](https://huggingface.co/abidlabs/GPT-Baker) from [AbidLabs](https://huggingface.co/abidlabs) of 🤗[Gradio](https://www.gradio.app/)
### Join us:
TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """
)
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Create"):
chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker")
with gr.Group():
with gr.Row():
textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True)
submit_btn = gr.Button("Bake 👩🍳", variant="secondary")
with gr.Tab("Configure Recipe"):
textbox_title = gr.Textbox("GPT Preview", label="Title")
textbox_system_prompt = gr.Textbox(label="System prompt", lines=6)
textbox_example = gr.Textbox(label="Placeholder example", lines=2)
with gr.Tab("Files"):
gr.Markdown("RAG coming soon!")
with gr.Column(visible=False, scale=5) as preview_column:
with gr.Tab("🪄 Preview of your Open GPT", elem_id="preview-tab") as preview_tab:
gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt])
with gr.Group(visible=False) as publish_row:
with gr.Row():
textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7)
publish_btn = gr.Button("Publish", variant="primary")
published_status = gr.Markdown(visible=False)
gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row])
gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row])
publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn])
demo.launch() |