|
import gradio as gr |
|
import requests |
|
import json |
|
import huggingface_hub |
|
from huggingface_hub import HfApi |
|
from gradio_client import Client |
|
import os |
|
|
|
HF_TOKEN = os.environ["HF_TOKEN"] |
|
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} |
|
|
|
tulu = "https://tonic1-tulu.hf.space/--replicas/9sffh/" |
|
|
|
|
|
welcome_message = """ |
|
Hi! I'm using [Tulu from AlenAi](https://huggingface.co/spaces/Tonic1/Tulu) I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup." |
|
|
|
What would you like to make? |
|
""" |
|
|
|
welcome_preview_message = """ |
|
Welcome to **{}**! Say something like: |
|
|
|
"{}" |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
system_prompt = """ |
|
You are an AI whose job it is to help users create their own chatbots. In particular, you need to respond succintly in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. Make sure each part is included. |
|
|
|
For example, if a user says, "make a bot that gives advice on how to grow your startup", first do a friendly response, then add the title, system prompt, and example user input. Immediately STOP after the example input. It should be EXACTLY in this format: |
|
|
|
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! |
|
Title: Startup Coach |
|
System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful. |
|
Example input: Risks of setting up a non-profit board |
|
|
|
Here's another example. If a user types, "Make a chatbot that roasts tech ceos", respond: |
|
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! |
|
Title: Tech Roaster |
|
System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect. |
|
Example input: Elon Musk |
|
""" |
|
|
|
def predict_beta(message, chatbot=[], system_prompt=system_prompt, max_new_tokens=1200, temperature=0.4, top_p=0.9, repetition_penalty=0.5, advanced=True): |
|
client = Client(tulu) |
|
|
|
try: |
|
result = client.predict( |
|
message, |
|
system_prompt, |
|
max_new_tokens, |
|
temperature, |
|
top_p, |
|
repetition_penalty, |
|
advanced, |
|
fn_index=0 |
|
) |
|
|
|
if result is not None and len(result) > 0: |
|
bot_message = result[0] |
|
return bot_message |
|
else: |
|
raise gr.Error("No response received from the model.") |
|
|
|
except Exception as e: |
|
error_msg = f"An error occurred: {str(e)}" |
|
raise gr.Error(error_msg) |
|
|
|
|
|
def extract_title_prompt_example(text, title, system_prompt, example_input): |
|
try: |
|
|
|
text_start = text.rfind("<|assistant|>", ) + len("<|assistant|>") |
|
text = text[text_start:] |
|
except ValueError: |
|
pass |
|
try: |
|
title_start = text.lower().rfind("title:") + len("title:") |
|
prompt_start = text.lower().rfind("system prompt:") |
|
title = text[title_start:prompt_start].strip() |
|
except ValueError: |
|
pass |
|
try: |
|
prompt_start = text.lower().rfind("system prompt:") + len("system prompt:") |
|
example_start = text.lower().rfind("example input:") |
|
system_prompt = text[prompt_start:example_start].strip() |
|
except ValueError: |
|
pass |
|
try: |
|
example_start = text.lower().rfind("example input:") + len("example input:") |
|
example_input = text[example_start:].strip() |
|
example_input = example_input[:example_input.index("\n")] |
|
except ValueError: |
|
pass |
|
return text, title, system_prompt, example_input |
|
|
|
def make_open_gpt(message, history, current_title, system_prompt, current_example_input): |
|
response = predict_beta(message, history, system_prompt) |
|
response, title, system_prompt, example_input = extract_title_prompt_example(response, current_title, system_prompt, current_example_input) |
|
return "", history + [(message, response)], title, system_prompt, example_input, [(None, welcome_preview_message.format(title, example_input))], example_input, gr.Column(visible=True), gr.Group(visible=True) |
|
|
|
def set_title_example(title, example): |
|
return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True) |
|
|
|
chatbot_preview = gr.Chatbot(layout="panel") |
|
textbox_preview = gr.Textbox(scale=7, container=False) |
|
|
|
def test_preview_chatbot(message, history, system_prompt): |
|
response = predict_beta(message, history, system_prompt) |
|
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>") |
|
response = response[text_start:] |
|
return response |
|
|
|
|
|
def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str: |
|
"""Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes.""" |
|
filename = filename.replace(" ", "-") |
|
filename = "".join([char for char in filename if char.isalnum() or char in "_-"]) |
|
filename_len = len(filename.encode()) |
|
if filename_len > max_bytes: |
|
while filename_len > max_bytes: |
|
if len(filename) == 0: |
|
break |
|
filename = filename[:-1] |
|
filename_len = len(filename.encode()) |
|
return filename |
|
|
|
|
|
constants = """ |
|
SYSTEM_PROMPT = "{}" |
|
TITLE = "{}" |
|
EXAMPLE_INPUT = "{}" |
|
""" |
|
|
|
|
|
def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token): |
|
source_file = 'app_template.py' |
|
destination_file = 'app.py' |
|
constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example) |
|
with open(source_file, 'r') as file: |
|
original_content = file.read() |
|
with open(destination_file, 'w') as file: |
|
file.write(constants_formatted + original_content) |
|
title = strip_invalid_filename_characters(textbox_title, max_bytes=30) |
|
api = HfApi(token=textbox_token) |
|
new_space = api.create_repo( |
|
repo_id=f"open-gpt-{title}", |
|
repo_type="space", |
|
exist_ok=True, |
|
private=False, |
|
space_sdk="gradio", |
|
token=textbox_token, |
|
) |
|
api.upload_file( |
|
repo_id=new_space.repo_id, |
|
path_or_fileobj='app.py', |
|
path_in_repo='app.py', |
|
token=textbox_token, |
|
repo_type="space", |
|
) |
|
api.upload_file( |
|
repo_id=new_space.repo_id, |
|
path_or_fileobj='README_template.md', |
|
path_in_repo='README.md', |
|
token=textbox_token, |
|
repo_type="space", |
|
) |
|
huggingface_hub.add_space_secret( |
|
new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token |
|
) |
|
|
|
return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} ✅", visible=True), gr.Button("Publish", interactive=True) |
|
|
|
|
|
css = """ |
|
#preview-tab-button{ |
|
font-weight: bold; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(""" # 👋🏻Welcome to 🕵🏻♂️Agent🌷Tulu |
|
**A🕵🏻♂️Agent🌷Tulu** lets you create your own **open-source GPTs** using [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b). Start chatting to automatically below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free & publish them on Spaces (as Open GPTs are powered by the [Tulu DPO model](https://huggingface.co/allenai/tulu-2-dpo-70b) ). |
|
You think this is cool + want to make your own ? check out [GPTBaker](https://huggingface.co/abidlabs/GPT-Baker) from [AbidLabs](https://huggingface.co/abidlabs) of 🤗[Gradio](https://www.gradio.app/) |
|
### Join us: |
|
TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """ |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Tab("Create"): |
|
chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker") |
|
with gr.Group(): |
|
with gr.Row(): |
|
textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True) |
|
submit_btn = gr.Button("Bake 👩🍳", variant="secondary") |
|
with gr.Tab("Configure Recipe"): |
|
textbox_title = gr.Textbox("GPT Preview", label="Title") |
|
textbox_system_prompt = gr.Textbox(label="System prompt", lines=6) |
|
textbox_example = gr.Textbox(label="Placeholder example", lines=2) |
|
with gr.Tab("Files"): |
|
gr.Markdown("RAG coming soon!") |
|
with gr.Column(visible=False, scale=5) as preview_column: |
|
with gr.Tab("🪄 Preview of your Open GPT", elem_id="preview-tab") as preview_tab: |
|
gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt]) |
|
with gr.Group(visible=False) as publish_row: |
|
with gr.Row(): |
|
textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7) |
|
publish_btn = gr.Button("Publish", variant="primary") |
|
|
|
published_status = gr.Markdown(visible=False) |
|
|
|
gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row]) |
|
gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row]) |
|
|
|
publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn]) |
|
|
|
demo.launch() |