Spaces:
Runtime error
Runtime error
# Welcome to Team Tonic's MultiMed | |
from gradio_client import Client | |
import os | |
import numpy as np | |
import base64 | |
import gradio as gr | |
import tempfile | |
import requests | |
import json | |
import dotenv | |
from scipy.io.wavfile import write | |
import PIL | |
from openai import OpenAI | |
import time | |
from PIL import Image | |
import io | |
import hashlib | |
import datetime | |
from utils import build_logger | |
from transformers import AutoTokenizer, MistralForCausalLM | |
import torch | |
import random | |
from textwrap import wrap | |
import transformers | |
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
from peft import PeftModel, PeftConfig | |
import torch | |
import os | |
dotenv.load_dotenv() | |
seamless_client = Client("facebook/seamless_m4t") | |
HuggingFace_Token = os.getenv("HuggingFace_Token") | |
hf_token = os.getenv("HuggingFace_Token") | |
def check_hallucination(assertion,citation): | |
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" | |
headers = {"Authorization": f"Bearer {HuggingFace_Token}"} | |
payload = {"inputs" : f"{assertion} [SEP] {citation}"} | |
response = requests.post(API_URL, headers=headers, json=payload,timeout=120) | |
output = response.json() | |
output = output[0][0]["score"] | |
return f"**hullicination score:** {output}" | |
# Define the API parameters | |
VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" | |
headers = {"Authorization": f"Bearer {HuggingFace_Token}"} | |
# Function to query the API | |
def query(payload): | |
response = requests.post(VAPI_URL, headers=headers, json=payload) | |
return response.json() | |
# Function to evaluate hallucination | |
def evaluate_hallucination(input1, input2): | |
# Combine the inputs | |
combined_input = f"{input1}. {input2}" | |
# Make the API call | |
output = query({"inputs": combined_input}) | |
# Extract the score from the output | |
score = output[0][0]['score'] | |
# Generate a label based on the score | |
if score < 0.5: | |
label = f"🔴 High risk. Score: {score:.2f}" | |
else: | |
label = f"🟢 Low risk. Score: {score:.2f}" | |
return label | |
def process_speech(input_language, audio_input): | |
""" | |
processing sound using seamless_m4t | |
""" | |
if audio_input is None : | |
return "no audio or audio did not save yet \nplease try again ! " | |
print(f"audio : {audio_input}") | |
print(f"audio type : {type(audio_input)}") | |
out = seamless_client.predict( | |
"S2TT", | |
"file", | |
None, | |
audio_input, #audio_name | |
"", | |
input_language,# source language | |
"English",# target language | |
api_name="/run", | |
) | |
out = out[1] # get the text | |
try : | |
return f"{out}" | |
except Exception as e : | |
return f"{e}" | |
def decode_image(encoded_image: str) -> Image: | |
decoded_bytes = base64.b64decode(encoded_image.encode("utf-8")) | |
buffer = io.BytesIO(decoded_bytes) | |
image = Image.open(buffer) | |
return image | |
def encode_image(image: Image.Image, format: str = "PNG") -> str: | |
with io.BytesIO() as buffer: | |
image.save(buffer, format=format) | |
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8") | |
return encoded_image | |
def get_conv_log_filename(): | |
t = datetime.datetime.now() | |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") | |
return name | |
def get_conv_image_dir(): | |
name = os.path.join(LOGDIR, "images") | |
os.makedirs(name, exist_ok=True) | |
return name | |
def get_image_name(image, image_dir=None): | |
buffer = io.BytesIO() | |
image.save(buffer, format="PNG") | |
image_bytes = buffer.getvalue() | |
md5 = hashlib.md5(image_bytes).hexdigest() | |
if image_dir is not None: | |
image_name = os.path.join(image_dir, md5 + ".png") | |
else: | |
image_name = md5 + ".png" | |
return image_name | |
def resize_image(image, max_size): | |
width, height = image.size | |
aspect_ratio = float(width) / float(height) | |
if width > height: | |
new_width = max_size | |
new_height = int(new_width / aspect_ratio) | |
else: | |
new_height = max_size | |
new_width = int(new_height * aspect_ratio) | |
resized_image = image.resize((new_width, new_height)) | |
return resized_image | |
def process_image(image_input): | |
# Initialize the Gradio client with the URL of the Gradio server | |
client = Client("https://adept-fuyu-8b-demo.hf.space/--replicas/pqjvl/") | |
# Check if the image input is a NumPy array | |
if isinstance(image_input, np.ndarray): | |
# Convert the NumPy array to a PIL Image | |
image = Image.fromarray(image_input) | |
# Save the PIL Image to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
image.save(tmp_file.name) | |
image_path = tmp_file.name | |
elif isinstance(image_input, str): | |
try: | |
# Try to decode if it's a base64 string | |
image = decode_image(image_input) | |
except Exception: | |
# If decoding fails, assume it's a file path or a URL | |
image_path = image_input | |
else: | |
# If decoding succeeds, save the decoded image to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
image.save(tmp_file.name) | |
image_path = tmp_file.name | |
else: | |
# Assuming it's a PIL Image, save it to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
image_input.save(tmp_file.name) | |
image_path = tmp_file.name | |
# Call the predict method of the client | |
result = client.predict( | |
image_path, # File path or URL of the image | |
True, # Additional parameter for the server (e.g., enable detailed captioning) | |
fn_index=2 # Function index if the server has multiple functions | |
) | |
# Clean up the temporary file if created | |
if not isinstance(image_input, str) or isinstance(image_input, str) and 'tmp' in image_path: | |
os.remove(image_path) | |
return result | |
def query_vectara(text): | |
user_message = text | |
# Read authentication parameters from the .env file | |
CUSTOMER_ID = os.getenv('CUSTOMER_ID') | |
CORPUS_ID = os.getenv('CORPUS_ID') | |
API_KEY = os.getenv('API_KEY') | |
# Define the headers | |
api_key_header = { | |
"customer-id": CUSTOMER_ID, | |
"x-api-key": API_KEY | |
} | |
# Define the request body in the structure provided in the example | |
request_body = { | |
"query": [ | |
{ | |
"query": user_message, | |
"queryContext": "", | |
"start": 1, | |
"numResults": 25, | |
"contextConfig": { | |
"charsBefore": 0, | |
"charsAfter": 0, | |
"sentencesBefore": 2, | |
"sentencesAfter": 2, | |
"startTag": "%START_SNIPPET%", | |
"endTag": "%END_SNIPPET%", | |
}, | |
"rerankingConfig": { | |
"rerankerId": 272725718, | |
"mmrConfig": { | |
"diversityBias": 0.35 | |
} | |
}, | |
"corpusKey": [ | |
{ | |
"customerId": CUSTOMER_ID, | |
"corpusId": CORPUS_ID, | |
"semantics": 0, | |
"metadataFilter": "", | |
"lexicalInterpolationConfig": { | |
"lambda": 0 | |
}, | |
"dim": [] | |
} | |
], | |
"summary": [ | |
{ | |
"maxSummarizedResults": 5, | |
"responseLang": "auto", | |
"summarizerPromptName": "vectara-summary-ext-v1.2.0" | |
} | |
] | |
} | |
] | |
} | |
# Make the API request using Gradio | |
response = requests.post( | |
"https://api.vectara.io/v1/query", | |
json=request_body, # Use json to automatically serialize the request body | |
verify=True, | |
headers=api_key_header | |
) | |
if response.status_code == 200: | |
query_data = response.json() | |
if query_data: | |
sources_info = [] | |
# Extract the summary. | |
summary = query_data['responseSet'][0]['summary'][0]['text'] | |
# Iterate over all response sets | |
for response_set in query_data.get('responseSet', []): | |
# Extract sources | |
# Limit to top 5 sources. | |
for source in response_set.get('response', [])[:5]: | |
source_metadata = source.get('metadata', []) | |
source_info = {} | |
for metadata in source_metadata: | |
metadata_name = metadata.get('name', '') | |
metadata_value = metadata.get('value', '') | |
if metadata_name == 'title': | |
source_info['title'] = metadata_value | |
elif metadata_name == 'author': | |
source_info['author'] = metadata_value | |
elif metadata_name == 'pageNumber': | |
source_info['page number'] = metadata_value | |
if source_info: | |
sources_info.append(source_info) | |
result = {"summary": summary, "sources": sources_info} | |
return f"{json.dumps(result, indent=2)}" | |
else: | |
return "No data found in the response." | |
else: | |
return f"Error: {response.status_code}" | |
def convert_to_markdown(vectara_response_json): | |
vectara_response = json.loads(vectara_response_json) | |
if vectara_response: | |
summary = vectara_response.get('summary', 'No summary available') | |
sources_info = vectara_response.get('sources', []) | |
# Format the summary as Markdown | |
markdown_summary = f' {summary}\n\n' | |
# Format the sources as a numbered list | |
markdown_sources = "" | |
for i, source_info in enumerate(sources_info): | |
author = source_info.get('author', 'Unknown author') | |
title = source_info.get('title', 'Unknown title') | |
page_number = source_info.get('page number', 'Unknown page number') | |
markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n" | |
return f"{markdown_summary}**Sources:**\n{markdown_sources}" | |
else: | |
return "No data found in the response." | |
# Functions to Wrap the Prompt Correctly | |
def wrap_text(text, width=90): | |
lines = text.split('\n') | |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): | |
# Combine user input and system prompt | |
formatted_input = f"{user_input}{system_prompt}" | |
# Encode the input text | |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) | |
model_inputs = encodeds.to(device) | |
# Generate a response using the model | |
output = model.generate( | |
**model_inputs, | |
max_length=max_length, | |
use_cache=True, | |
early_stopping=True, | |
bos_token_id=model.config.bos_token_id, | |
eos_token_id=model.config.eos_token_id, | |
pad_token_id=model.config.eos_token_id, | |
temperature=0.1, | |
do_sample=True | |
) | |
# Decode the response | |
response_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response_text | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Use the base model's ID | |
base_model_id = "stabilityai/stablelm-3b-4e1t" | |
model_directory = "Tonic/stablemed" | |
# Instantiate the Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left") | |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = 'left' | |
# Load the PEFT model | |
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token) | |
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True) | |
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token) | |
class ChatBot: | |
def __init__(self): | |
self.history = [] | |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"): | |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]" | |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") | |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
return response_text | |
bot = ChatBot() | |
def process_summary_with_stablemed(summary): | |
system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description." | |
response_text = bot.predict(summary, system_prompt) | |
return response_text | |
# Main function to handle the Gradio interface logic | |
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None): | |
try: | |
# Initialize the conditional variables | |
combined_text = "" | |
image_description = "" | |
# Process text input | |
if text_input is not None: | |
combined_text = "The user asks the following to his health adviser: " + text_input | |
# Process audio input | |
if audio_input is not None: | |
audio_text = process_speech(input_language, audio_input) | |
print("Audio Text:", audio_text) # Debug print | |
combined_text += "\n" + audio_text | |
# Process image input | |
if image_input is not None: | |
image_text = process_image(image_input) # Call process_image with only the image input | |
print("Image Text:", image_text) # Debug print | |
combined_text += "\n" + image_text | |
# Check if combined text is empty | |
if not combined_text.strip(): | |
return "Error: Please provide some input (text, audio, or image).", "No hallucination evaluation" | |
# Use the text to query Vectara | |
vectara_response_json = query_vectara(combined_text) | |
print("Vectara Response:", vectara_response_json) # Debug print | |
# Convert the Vectara response to Markdown | |
markdown_output = convert_to_markdown(vectara_response_json) | |
# Append the original image description to the markdown output | |
if image_description: | |
markdown_output += "\n\n**Original Image Description:**\n" + image_description | |
# Process the summary with OpenAI | |
final_response = process_summary_with_stablemed(markdown_output) | |
print("Final Response:", final_response) # Debug print | |
# Evaluate hallucination | |
hallucination_label = evaluate_hallucination(final_response, markdown_output) | |
print("Hallucination Label:", hallucination_label) # Debug print | |
return final_response, hallucination_label | |
except Exception as e: | |
# Handle exceptions | |
print(f"An error occurred: {e}") | |
return "Error occurred during processing.", "No hallucination evaluation" | |
# Interface logic | |
def clear(interface): | |
interface['language_selection'].reset() | |
interface['speech_to_text'].hide() | |
interface['image_identification'].hide() | |
interface['text_summarization'].hide() | |
interface['results'].hide() | |
def on_language_change(language, interface): | |
if language: | |
interface['speech_to_text'].show() | |
interface['image_identification'].show() | |
interface['text_summarization'].show() | |
else: | |
interface['speech_to_text'].hide() | |
interface['image_identification'].hide() | |
interface['text_summarization'].hide() | |
welcome_message = """ | |
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷 | |
🗣️📝 This is an educational and accessible conversational tool. | |
### How To Use ⚕🗣️😷MultiMed⚕: | |
🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text! | |
📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval. | |
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
### Join us : | |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" | |
""" | |
languages = [ | |
"Afrikaans", | |
"Amharic", | |
"Modern Standard Arabic", | |
"Moroccan Arabic", | |
"Egyptian Arabic", | |
"Assamese", | |
"Asturian", | |
"North Azerbaijani", | |
"Belarusian", | |
"Bengali", | |
"Bosnian", | |
"Bulgarian", | |
"Catalan", | |
"Cebuano", | |
"Czech", | |
"Central Kurdish", | |
"Mandarin Chinese", | |
"Welsh", | |
"Danish", | |
"German", | |
"Greek", | |
"English", | |
"Estonian", | |
"Basque", | |
"Finnish", | |
"French", | |
"West Central Oromo", | |
"Irish", | |
"Galician", | |
"Gujarati", | |
"Hebrew", | |
"Hindi", | |
"Croatian", | |
"Hungarian", | |
"Armenian", | |
"Igbo", | |
"Indonesian", | |
"Icelandic", | |
"Italian", | |
"Javanese", | |
"Japanese", | |
"Kamba", | |
"Kannada", | |
"Georgian", | |
"Kazakh", | |
"Kabuverdianu", | |
"Halh Mongolian", | |
"Khmer", | |
"Kyrgyz", | |
"Korean", | |
"Lao", | |
"Lithuanian", | |
"Luxembourgish", | |
"Ganda", | |
"Luo", | |
"Standard Latvian", | |
"Maithili", | |
"Malayalam", | |
"Marathi", | |
"Macedonian", | |
"Maltese", | |
"Meitei", | |
"Burmese", | |
"Dutch", | |
"Norwegian Nynorsk", | |
"Norwegian Bokmål", | |
"Nepali", | |
"Nyanja", | |
"Occitan", | |
"Odia", | |
"Punjabi", | |
"Southern Pashto", | |
"Western Persian", | |
"Polish", | |
"Portuguese", | |
"Romanian", | |
"Russian", | |
"Slovak", | |
"Slovenian", | |
"Shona", | |
"Sindhi", | |
"Somali", | |
"Spanish", | |
"Serbian", | |
"Swedish", | |
"Swahili", | |
"Tamil", | |
"Telugu", | |
"Tajik", | |
"Tagalog", | |
"Thai", | |
"Turkish", | |
"Ukrainian", | |
"Urdu", | |
"Northern Uzbek", | |
"Vietnamese", | |
"Xhosa", | |
"Yoruba", | |
"Cantonese", | |
"Colloquial Malay", | |
"Standard Malay", | |
"Zulu" | |
] | |
with gr.Blocks(theme='ParityError/Anime') as iface: | |
with gr.Row() as language_selection: | |
input_language = gr.Dropdown(languages, label="Select the language", value="English", interactive=True) | |
with gr.Accordion("Speech to Text", open=False) as speech_to_text: | |
audio_input = gr.Audio(label="Speak", type="filepath", sources="microphone") | |
audio_output = gr.Markdown(label="Output text") | |
with gr.Accordion("Image Identification", open=False) as image_identification: | |
image_input = gr.Image(label="Upload image") | |
image_output = gr.Markdown(label="Output text") | |
with gr.Accordion("Text Summarization", open=False) as text_summarization: | |
text_input = gr.Textbox(label="Input text", lines=5) | |
text_output = gr.Markdown(label="Output text") | |
text_button = gr.Button("Process text") | |
hallucination_output = gr.Label(label="Hallucination Evaluation") | |
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, hallucination_output]) | |
with gr.Row() as results: | |
text_output = gr.Markdown() | |
hallucination_output = gr.Label() | |
clear_button = gr.Button("Clear") | |
clear_button.click(clear, inputs=[], outputs=[], args=[iface]) | |
# Initially hide all blocks except language selection | |
iface['speech_to_text'].hide() | |
iface['image_identification'].hide() | |
iface['text_summarization'].hide() | |
iface['results'].hide() | |
gr.Examples([ | |
["What is the proper treatment for buccal herpes?"], | |
["Male, 40 presenting with swollen glands and a rash"], | |
["How does cellular metabolism work TCA cycle"], | |
["What special care must be provided to children with chicken pox?"], | |
["When and how often should I wash my hands?"], | |
["بکل ہرپس کا صحیح علاج کیا ہے؟"], | |
["구강 헤르페스의 적절한 치료법은 무엇입니까?"], | |
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"], | |
],inputs=[text_input]) | |
iface.queue().launch(show_error=True,debug=True) | |