not-lain commited on
Commit
7dc22ca
·
1 Parent(s): 4ffa9cc

added audio processing function

Browse files
Files changed (1) hide show
  1. app.py +29 -51
app.py CHANGED
@@ -9,6 +9,18 @@ import requests
9
  import json
10
  import dotenv
11
  from transformers import AutoProcessor, SeamlessM4TModel
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  from lang_list import (
14
  LANGUAGE_NAME_TO_CODE,
@@ -17,61 +29,27 @@ from lang_list import (
17
  T2TT_TARGET_LANGUAGE_NAMES,
18
  TEXT_SOURCE_LANGUAGE_NAMES,
19
  LANG_TO_SPKR_ID,
20
- )
21
-
22
- dotenv.load_dotenv()
23
-
24
- DEFAULT_TARGET_LANGUAGE = "English"
25
- AUDIO_SAMPLE_RATE = 16000.0
26
- MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
27
-
28
-
29
- def predict(
30
- task_name: str,
31
- audio_source: str,
32
- input_audio_mic: str | None,
33
- input_audio_file: str | None,
34
- input_text: str | None,
35
- source_language: str | None,
36
- target_language: str,
37
- ) -> tuple[tuple[int, np.ndarray] | None, str]:
38
- task_name = task_name.split()[0]
39
- source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
40
- target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
41
-
42
- if task_name in ["S2ST", "S2TT", "ASR"]:
43
- if audio_source == "microphone":
44
- input_data = input_audio_mic
45
- else:
46
- input_data = input_audio_file
47
-
48
- arr, org_sr = torchaudio.load(input_data)
49
- new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
50
- max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
51
- if new_arr.shape[1] > max_length:
52
- new_arr = new_arr[:, :max_length]
53
- gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
54
-
55
-
56
- input_data = processor(audios = new_arr, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt").to(device)
57
- else:
58
- input_data = processor(text = input_text, src_lang=source_language_code, return_tensors="pt").to(device)
59
 
60
 
61
- if task_name in ["S2TT", "T2TT"]:
62
- tokens_ids = model.generate(**input_data, generate_speech=False, tgt_lang=target_language_code, num_beams=5, do_sample=True)[0].cpu().squeeze().detach().tolist()
63
- else:
64
- output = model.generate(**input_data, return_intermediate_token_ids=True, tgt_lang=target_language_code, num_beams=5, do_sample=True, spkr_id=LANG_TO_SPKR_ID[target_language_code][0])
65
-
66
- waveform = output.waveform.cpu().squeeze().detach().numpy()
67
- tokens_ids = output.sequences.cpu().squeeze().detach().tolist()
68
-
 
 
 
 
 
 
69
  text_out = processor.decode(tokens_ids, skip_special_tokens=True)
70
 
71
- if task_name in ["S2ST", "T2ST"]:
72
- return (AUDIO_SAMPLE_RATE, waveform), text_out
73
- else:
74
- return None, text_out
75
 
76
  def convert_image_to_required_format(image):
77
  """
 
9
  import json
10
  import dotenv
11
  from transformers import AutoProcessor, SeamlessM4TModel
12
+ import torchaudio
13
+ dotenv.load_dotenv()
14
+
15
+
16
+ AUDIO_SAMPLE_RATE = 16000.0
17
+ MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
18
+ DEFAULT_TARGET_LANGUAGE = "English"
19
+
20
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
21
+
22
+ processor = AutoProcessor.from_pretrained("ylacombe/hf-seamless-m4t-large")
23
+ model = SeamlessM4TModel.from_pretrained("ylacombe/hf-seamless-m4t-large").to(device)
24
 
25
  from lang_list import (
26
  LANGUAGE_NAME_TO_CODE,
 
29
  T2TT_TARGET_LANGUAGE_NAMES,
30
  TEXT_SOURCE_LANGUAGE_NAMES,
31
  LANG_TO_SPKR_ID,
32
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
+ def process_speech(sound):
36
+ """
37
+ processing sound using seamless_m4t
38
+ """
39
+ # task_name = "T2TT"
40
+ arr, org_sr = torchaudio.load(sound)
41
+ target_language_code = LANGUAGE_NAME_TO_CODE[DEFAULT_TARGET_LANGUAGE]
42
+ new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
43
+ max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
44
+ if new_arr.shape[1] > max_length:
45
+ new_arr = new_arr[:, :max_length]
46
+ gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
47
+ input_data = processor(audios = new_arr, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt").to(device)
48
+ tokens_ids = model.generate(**input_data, generate_speech=False, tgt_lang=target_language_code, num_beams=5, do_sample=True)[0].cpu().squeeze().detach().tolist()
49
  text_out = processor.decode(tokens_ids, skip_special_tokens=True)
50
 
51
+ return text_out
52
+
 
 
53
 
54
  def convert_image_to_required_format(image):
55
  """