Tonic commited on
Commit
c6ddc86
·
1 Parent(s): 7afe812

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -43
app.py CHANGED
@@ -3,62 +3,45 @@ import requests
3
  import json
4
 
5
  # Function to interact with Vectara API
6
- def query_vectara(question, chat_history):
7
- api_endpoint = "https://api.vectara.io/v1/query"
8
  customer_id = "<YOUR-CUSTOMER-ID>"
9
  corpus_id = "<YOUR-CORPUS-ID>"
10
  api_key = "<YOUR-API-KEY>"
11
-
12
- # Get the user's message from the chat history
13
- user_message = chat_history[-1][0]
14
-
15
- query_body = {
16
- "query": [
17
- {
18
- "query": user_message, # Use the user's message as the query
19
- "start": 0,
20
- "numResults": 10,
21
- "corpusKey": [
22
- {
23
- "customerId": customer_id,
24
- "corpusId": corpus_id,
25
- "lexicalInterpolationConfig": {"lambda": 0.025}
26
- }
27
- ],
28
- "contextConfig": {
29
- "sentencesBefore": 3,
30
- "sentencesAfter": 3,
31
- "startTag": "%START_TAG%",
32
- "endTag": "%END_TAG%"
33
- },
34
- "summary": [
35
- {
36
- "responseLang": "eng",
37
- "maxSummarizedResults": 7,
38
- "summarizerPromptName": "vectara-summarizer-ext-v1.3.0"
39
- }
40
- ]
41
- }
42
- ]
43
- }
44
 
45
  post_headers = {
46
- "Content-type": "application/json",
47
- "Accept": "application/json",
48
- "customer-id": customer_id,
49
- "x-api-key": api_key
50
  }
51
 
52
- response = requests.post(api_endpoint, json=query_body, headers=post_headers)
 
 
 
 
53
 
54
  if response.status_code == 200:
55
- return response.json()
56
  else:
57
- return {"error": "Failed to query Vectara API"}
 
 
 
 
 
 
 
 
58
 
59
  # Create a Gradio ChatInterface
60
- iface = gr.ChatInterface(
61
  fn=query_vectara,
 
 
 
 
 
62
  examples=["Hello", "What is the weather today?", "Tell me a joke"],
63
  title="Vectara Chatbot",
64
  description="Ask me anything using the Vectara API!",
 
3
  import json
4
 
5
  # Function to interact with Vectara API
6
+ def query_vectara(question, chat_history, uploaded_file):
7
+ # Handle file upload here (using the provided code)
8
  customer_id = "<YOUR-CUSTOMER-ID>"
9
  corpus_id = "<YOUR-CORPUS-ID>"
10
  api_key = "<YOUR-API-KEY>"
11
+ url = f"https://api.vectara.io/v1/upload?c={customer_id}&o={corpus_id}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  post_headers = {
14
+ "x-api-key": api_key,
15
+ "customer-id": customer_id
 
 
16
  }
17
 
18
+ files = {
19
+ "file": (uploaded_file.name, uploaded_file),
20
+ "doc_metadata": (None, json.dumps({"metadata_key": "metadata_value"})), # Replace with your metadata
21
+ }
22
+ response = requests.post(url, files=files, verify=True, headers=post_headers)
23
 
24
  if response.status_code == 200:
25
+ upload_status = "File uploaded successfully"
26
  else:
27
+ upload_status = "Failed to upload file"
28
+
29
+ # The rest of the chatbot logic goes here
30
+
31
+ api_endpoint = "https://api.vectara.io/v1/query"
32
+
33
+ # Rest of the chatbot logic as before
34
+
35
+ return f"{upload_status}\n\nResponse from Vectara API: {response.text}"
36
 
37
  # Create a Gradio ChatInterface
38
+ iface = gr.Interface(
39
  fn=query_vectara,
40
+ inputs=[
41
+ gr.inputs.Text(label="Ask a question:"),
42
+ gr.inputs.File(label="Upload a file")
43
+ ],
44
+ outputs=gr.outputs.Textbox(),
45
  examples=["Hello", "What is the weather today?", "Tell me a joke"],
46
  title="Vectara Chatbot",
47
  description="Ask me anything using the Vectara API!",