# Welcome to Team Tonic's MultiMed from gradio_client import Client import os import numpy as np import base64 import gradio as gr import requests import json import dotenv from scipy.io.wavfile import write import PIL from openai import OpenAI import time dotenv.load_dotenv() seamless_client = Client("facebook/seamless_m4t") HuggingFace_Token = os.getenv("HuggingFace_Token") def check_hallucination(assertion,citation): API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" headers = {"Authorization": f"Bearer {HuggingFace_Token}"} payload = {"inputs" : f"{assertion} [SEP] {citation}"} response = requests.post(API_URL, headers=headers, json=payload,timeout=120) output = response.json() output = output[0][0]["score"] return f"**hullicination score:** {output}" # Define the API parameters VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" headers = {"Authorization": f"Bearer {HuggingFace_Token}"} # Function to query the API def query(payload): response = requests.post(VAPI_URL, headers=headers, json=payload) return response.json() # Function to evaluate hallucination def evaluate_hallucination(input1, input2): # Combine the inputs combined_input = f"{input1}. {input2}" # Make the API call output = query({"inputs": combined_input}) # Extract the score from the output score = output[0][0]['score'] # Generate a label based on the score if score < 0.5: label = "🔴", f"The score is less than 0.5, indicating low risk. Score: {score:.2f}" else: label = "🟢", f"The score is 0.5 or higher, indicating higher risk. Score: {score:.2f}" return label def process_speech(input_language, audio_input): """ processing sound using seamless_m4t """ if audio_input is None : return "no audio or audio did not save yet \nplease try again ! " print(f"audio : {audio_input}") print(f"audio type : {type(audio_input)}") out = seamless_client.predict( "S2TT", "file", None, audio_input, #audio_name "", input_language,# source language "English",# target language api_name="/run", ) out = out[1] # get the text try : return f"{out}" except Exception as e : return f"{e}" def process_image(image) : img_name = f"{np.random.randint(0, 100)}.jpg" PIL.Image.fromarray(image.astype('uint8'), 'RGB').save(img_name) image = open(img_name, "rb").read() base64_image = base64_image = base64.b64encode(image).decode('utf-8') openai_api_key = os.getenv('OPENAI_API_KEY') # oai_org = os.getenv('OAI_ORG') headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } payload = { "model": "gpt-4-vision-preview", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the photo in minute detail. Explain why each area or item in the photograph would be inappropriate to describe if required. Pay attention to anatomy, symptoms and remedies. Propose a course of action based on your assessment. Exclude any other commentary:" }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ], "max_tokens": 1200 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) try : out = response.json() out = out["choices"][0]["message"]["content"] return out except Exception as e : return f"{e}" def query_vectara(text): user_message = text # Read authentication parameters from the .env file CUSTOMER_ID = os.getenv('CUSTOMER_ID') CORPUS_ID = os.getenv('CORPUS_ID') API_KEY = os.getenv('API_KEY') # Define the headers api_key_header = { "customer-id": CUSTOMER_ID, "x-api-key": API_KEY } # Define the request body in the structure provided in the example request_body = { "query": [ { "query": user_message, "queryContext": "", "start": 1, "numResults": 50, "contextConfig": { "charsBefore": 0, "charsAfter": 0, "sentencesBefore": 2, "sentencesAfter": 2, "startTag": "%START_SNIPPET%", "endTag": "%END_SNIPPET%", }, "rerankingConfig": { "rerankerId": 272725718, "mmrConfig": { "diversityBias": 0.35 } }, "corpusKey": [ { "customerId": CUSTOMER_ID, "corpusId": CORPUS_ID, "semantics": 0, "metadataFilter": "", "lexicalInterpolationConfig": { "lambda": 0 }, "dim": [] } ], "summary": [ { "maxSummarizedResults": 5, "responseLang": "auto", "summarizerPromptName": "vectara-summary-ext-v1.2.0" } ] } ] } # Make the API request using Gradio response = requests.post( "https://api.vectara.io/v1/query", json=request_body, # Use json to automatically serialize the request body verify=True, headers=api_key_header ) if response.status_code == 200: query_data = response.json() if query_data: sources_info = [] # Extract the summary. summary = query_data['responseSet'][0]['summary'][0]['text'] # Iterate over all response sets for response_set in query_data.get('responseSet', []): # Extract sources # Limit to top 5 sources. for source in response_set.get('response', [])[:5]: source_metadata = source.get('metadata', []) source_info = {} for metadata in source_metadata: metadata_name = metadata.get('name', '') metadata_value = metadata.get('value', '') if metadata_name == 'title': source_info['title'] = metadata_value elif metadata_name == 'author': source_info['author'] = metadata_value elif metadata_name == 'pageNumber': source_info['page number'] = metadata_value if source_info: sources_info.append(source_info) result = {"summary": summary, "sources": sources_info} return f"{json.dumps(result, indent=2)}" else: return "No data found in the response." else: return f"Error: {response.status_code}" def convert_to_markdown(vectara_response_json): vectara_response = json.loads(vectara_response_json) if vectara_response: summary = vectara_response.get('summary', 'No summary available') sources_info = vectara_response.get('sources', []) # Format the summary as Markdown markdown_summary = f' {summary}\n\n' # Format the sources as a numbered list markdown_sources = "" for i, source_info in enumerate(sources_info): author = source_info.get('author', 'Unknown author') title = source_info.get('title', 'Unknown title') page_number = source_info.get('page number', 'Unknown page number') markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n" return f"{markdown_summary}**Sources:**\n{markdown_sources}" else: return "No data found in the response." # Main function to handle the Gradio interface logic def process_summary_with_openai(summary): """ This function takes a summary text as input and processes it with OpenAI's GPT model. """ try: # Ensure that the OpenAI client is properly initialized client = OpenAI(api_key=os.getenv('OPENAI_API_KEY')) # Create the prompt for OpenAI's completion prompt = "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the proper options in minute detail. Propose a course of action based on your assessment. You will recieve a summary assessment in a language, respond ONLY in English. Exclude any other commentary:" # Call the OpenAI API with the prompt and the summary completion = client.chat.completions.create( model="gpt-4-1106-preview", # Make sure to use the correct model name messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": summary} ] ) # Extract the content from the completion final_summary = completion.choices[0].message.content return final_summary except Exception as e: return str(e) def process_and_query(input_language=None,audio_input=None,image_input=None,text_input=None): try: text = "" if text_input is not None : # augment the prompt before feeding it to vectara text = "the user asks the following to his health adviser " + text # process audio if audio_input is not None : text += "\n"+process_speech(input_language,audio_input) # process image if image_input is not None : text += "\n"+process_image(image_input) # Use the text to query Vectara vectara_response_json = query_vectara(text) # Convert the Vectara response to Markdown markdown_output = convert_to_markdown(vectara_response_json) # Process the summary with OpenAI final_response = process_summary_with_openai(markdown_output) # Evaluate hallucination hallucination_label = evaluate_hallucination(final_response, markdown_output) # Return the processed summary along with the hallucination label return final_response, hallucination_label except Exception as e: # Return a default value for both outputs in case of an exception return str(e), "Error in processing" welcome_message = """ # 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷 ### How To Use ⚕🗣️😷MultiMed⚕: #### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text! #### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. #### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space #### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" """ languages = [ "Afrikaans", "Amharic", "Modern Standard Arabic", "Moroccan Arabic", "Egyptian Arabic", "Assamese", "Asturian", "North Azerbaijani", "Belarusian", "Bengali", "Bosnian", "Bulgarian", "Catalan", "Cebuano", "Czech", "Central Kurdish", "Mandarin Chinese", "Welsh", "Danish", "German", "Greek", "English", "Estonian", "Basque", "Finnish", "French", "West Central Oromo", "Irish", "Galician", "Gujarati", "Hebrew", "Hindi", "Croatian", "Hungarian", "Armenian", "Igbo", "Indonesian", "Icelandic", "Italian", "Javanese", "Japanese", "Kamba", "Kannada", "Georgian", "Kazakh", "Kabuverdianu", "Halh Mongolian", "Khmer", "Kyrgyz", "Korean", "Lao", "Lithuanian", "Luxembourgish", "Ganda", "Luo", "Standard Latvian", "Maithili", "Malayalam", "Marathi", "Macedonian", "Maltese", "Meitei", "Burmese", "Dutch", "Norwegian Nynorsk", "Norwegian Bokmål", "Nepali", "Nyanja", "Occitan", "Odia", "Punjabi", "Southern Pashto", "Western Persian", "Polish", "Portuguese", "Romanian", "Russian", "Slovak", "Slovenian", "Shona", "Sindhi", "Somali", "Spanish", "Serbian", "Swedish", "Swahili", "Tamil", "Telugu", "Tajik", "Tagalog", "Thai", "Turkish", "Ukrainian", "Urdu", "Northern Uzbek", "Vietnamese", "Xhosa", "Yoruba", "Cantonese", "Colloquial Malay", "Standard Malay", "Zulu" ] with gr.Blocks(theme='ParityError/Anime') as iface : gr.Markdown(welcome_message) with gr.Accordion("speech to text",open=True): input_language = gr.Dropdown(languages, label="select the language",value="English",interactive=True) audio_input = gr.Audio(label="speak",type="filepath",sources="microphone") audio_output = gr.Markdown(label="output text") # audio_button = gr.Button("process audio") # audio_button.click(process_speech, inputs=[input_language,audio_input], outputs=audio_output) gr.Examples([["English","sample_input.mp3"]],inputs=[input_language,audio_input]) with gr.Accordion("image identification",open=True): image_input = gr.Image(label="upload image") image_output = gr.Markdown(label="output text") # image_button = gr.Button("process image") # image_button.click(process_image, inputs=image_input, outputs=image_output) gr.Examples(["sick person.jpeg"],inputs=[image_input]) with gr.Accordion("text summarization",open=True): text_input = gr.Textbox(label="input text",lines=5) text_output = gr.Markdown(label="output text") text_button = gr.Button("process text") hallucination_output = gr.Label(label="Hallucination Evaluation") text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, hallucination_output]) gr.Examples([ ["What is the proper treatment for buccal herpes?"], ["Male, 40 presenting with swollen glands and a rash"], ["How does cellular metabolism work TCA cycle"], ["What special care must be provided to children with chicken pox?"], ["When and how often should I wash my hands?"], ["بکل ہرپس کا صحیح علاج کیا ہے؟"], ["구강 헤르페스의 적절한 치료법은 무엇입니까?"], ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"], ],inputs=[text_input]) # with gr.Accordion("hallucination check",open=True): # assertion = gr.Textbox(label="assertion") # citation = gr.Textbox(label="citation text") # hullucination_output = gr.Markdown(label="output text") # hallucination_button = gr.Button("check hallucination") # gr.Examples([["i am drunk","sarah is pregnant"]],inputs=[assertion,citation]) # hallucination_button.click(check_hallucination,inputs=[assertion,citation],outputs=hullucination_output) iface.queue().launch(show_error=True,debug=True)