import gradio as gr import requests import json from decouple import Config config = Config('.env') def query_vectara(question): user_message = question # Read authentication parameters from the .env file CUSTOMER_ID = config('CUSTOMER_ID') CORPUS_ID = config('CORPUS_ID') API_KEY = config('API_KEY') # Define the headers api_key_header = { "customer-id": CUSTOMER_ID, "x-api-key": API_KEY } # Define the request body in the structure provided in the example request_body = { "query": [ { "query": user_message, "queryContext": "", "start": 1, "numResults": 10, "contextConfig": { "charsBefore": 0, "charsAfter": 0, "sentencesBefore": 2, "sentencesAfter": 2, "startTag": "%START_SNIPPET%", "endTag": "%END_SNIPPET%", }, "rerankingConfig": { "rerankerId": 272725718, "mmrConfig": { "diversityBias": 0.27 } }, "corpusKey": [ { "customerId": CUSTOMER_ID, "corpusId": CORPUS_ID, "semantics": 0, "metadataFilter": "", "lexicalInterpolationConfig": { "lambda": 0 }, "dim": [] } ], "summary": [ { "maxSummarizedResults": 5, "responseLang": "eng", "summarizerPromptName": "vectara-summary-ext-v1.2.0" } ] } ] } # Make the API request using Gradio response = requests.post( "https://api.vectara.io/v1/query", json=request_body, # Use json to automatically serialize the request body verify=True, headers=api_key_header ) if response.status_code == 200: query_data = response.json() print(query_data) if query_data: sources_info = [] # Iterate over all response sets for response_set in query_data.get('responseSet', []): # Extract sources for source in response_set.get('response', []): source_metadata = source.get('metadata', []) source_info = {} for metadata in source_metadata: metadata_name = metadata.get('name', '') metadata_value = metadata.get('value', '') if metadata_name == 'title': source_info['title'] = metadata_value elif metadata_name == 'author': source_info['author'] = metadata_value elif metadata_name == 'pageNumber': source_info['page number'] = metadata_value if source_info: sources_info.append(source_info) return f"Sources:\n{json.dumps(sources_info, indent=2)}" else: return "No data found in the response." else: return f"Error: {response.status_code}" def convert_to_markdown(vectara_response): if vectara_response: response_set = vectara_response.get('responseSet', [{}])[0] summary = response_set.get('summary', [{}])[0] summary_text = summary.get('text', 'No summary available') sources = response_set.get('response', [])[:5] sources_text = [source.get('text', '') for source in sources] # Format the summary as Markdown markdown_summary = f'**Summary:** {summary_text}\n\n' # Format the sources as a numbered list markdown_sources = "\n".join([f"{i+1}. {source}" for i, source in enumerate(sources_text)]) return f"{markdown_summary}**Sources:**\n{markdown_sources}" else: return "No data found in the response." iface = gr.Interface( fn=query_vectara, inputs=[gr.Textbox(label="Input Text")], outputs=[gr.Markdown(label="Output Text")], title="Vectara Chatbot", description="Ask me anything using the Vectara API!" ) iface.launch()